
Design and Analysis Algorithm

Pertemuan 03

Drs. Achmad Ridok M.Kom

Imam Cholissodin, S.Si., M.Kom

M. Ali Fauzi, S.Kom., M.Kom

Ratih Kartika Dewi, ST, M.Kom

Contents

2

Asymptotic Notation

CS3024-FAZ
3

Contents

 Asymptotic Notations:

 O (big oh)

  (big omega)

  (big theta)

 Basic Efficiency Classes

CS3024-FAZ
4

In the following discussion…

 t(n) & g(n): any nonnegative functions defined

on the set of natural numbers

 t(n)  an algorithm’s running time

 Usually indicated by its basic operation count C(n)

 g(n)  some simple function to compare the

count with

CS3024-FAZ
5

O(g(n)): Informally

 O(g(n)) is a set of all functions with a smaller or

same order of growth as g(n)

 Examples:

 n  O(n2); 100n + 5  O(n2)

 ½ n (n-1)  O(n2)

 n3  O(n2); 0.0001 n3  O(n2); n4+n+1  O(n2)



CS3024-FAZ
6

(g(n)): Informally

 (g(n)) is a set of all functions with a larger or

same order of growth as g(n)

 Examples:

 n3  (n2)

 ½ n (n-1)  (n2)

 100n + 5  (n2)

≥

CS3024-FAZ
7

(g(n)): Informally

 (g(n)) is a set of all functions with a same

order of growth as g(n)

 Examples:

 an2+bn+c; a>0  (n2); n2+sin n  (n2)

 ½ n (n-1)  (n2); n2+log n  (n2)

 100n + 5  (n2); n3  (n2)

=

CS3024-FAZ
8

O-notation: Formally

 DEF1: A function t(n) is said to be in O(g(n)),

denoted t(n)  O(g(n)), if t(n) is bounded above

by some constant multiple of g(n) for all large n

 i.e. there exist some positive constant c and

some nonnegative integer n0, such that

t(n) ≤ cg(n) for all n ≥ n0

CS3024-FAZ
9

t(n)  O(g(n)): Illustration

n
n0

d
o

e
s
n

't

m
a

tt
e

r

t(n)

cg(n)

CS3024-FAZ
10

Proving Example: 100n + 5 

O(n2)

 Remember DEF1: find c and n0, such that t(n) ≤

cg(n) for all n ≥ n0

 100n + 5 ≤ 100n + n (for all n ≥ 5) = 101n ≤

101n2
 c=101, n0=5

 100n + 5 ≤ 100n + 5n (for all n ≥ 1) = 105n ≤

105n2
 c=105, n0=1

 …

Big-Oh

 The O symbol was introduced in 1927 to

indicate relative growth of two functions based

on asymptotic behavior of the functions now

used to classify functions and families of

functions

Upper Bound Notation

 We say Insertion Sort’s run time is O(n2)
 Properly we should say run time is in O(n2)

 Read O as “Big-O” (you’ll also hear it as “order”)

 In general a function
 f(n) is O(g(n)) if  positive constants c and n0 such

that f(n)  c  g(n)  n  n0

 e.g. if f(n)=1000n and g(n)=n2, n0 > 1000 and c
= 1 then f(n0) < 1.g(n0) and we say that f(n) =
O(g(n))

Asymptotic Upper Bound

f(n)

g(n)

c g(n)
• f(n)  c g(n) for all n  n0

• g(n) is called an

asymptotic upper bound of f(n).

• We write f(n)=O(g(n))

• It reads f(n) is big oh of g(n).

n0

Big-Oh, the Asymptotic Upper Bound

 This is the most popular notation for run time

since we're usually looking for worst case time.

 If Running Time of Algorithm X is O(n2) , then

for any input the running time of algorithm X is

at most a quadratic function, for sufficiently

large n.

 e.g. 2n2 = O(n3) .

 From the definition using c = 1 and n0 = 2. O(n2)

is tighter than O(n3).

6

g(n)

f(n)

for all n>6, g(n) > 1 f(n).

Thus the function f is in the

big-O of g.

that is, f(n) in O(g(n)).

Example 1

g(n)

f(n)

5

There exists a n0=5 s.t. for all

n>n0, f(n) < 1 g(n).

Thus, f(n) is in O(g(n)).

Example 2

There exists a n0=5, c=3.5, s.t.

for all n>n0, f(n) < c h(n).

Thus, f(n) is in O(h(n)).

5

h(n)

f(n)

3.5 h(n)

Example 3

Example of Asymptotic Upper Bound

f(n)=3n2+5

g(n)=n2

4g(n)=4n2

4 g(n) = 4n2

= 3n2 + n2

 3n2 + 9 for all n  3

> 3n2 + 5

= f(n)

Thus, f(n)=O(g(n)).

3

Exercise on O-notation

 Show that 3n2+2n+5 = O(n2)

10 n2 = 3n2 + 2n2 + 5n2

 3n2 + 2n + 5 for n  1

c = 10, n0 = 1

Classification of Function : BIG O (1/2)

 A function f(n) is said to be of at most logarithmic

growth if f(n) = O(log n)

 A function f(n) is said to be of at most quadratic

growth if f(n) = O(n2)

 A function f(n) is said to be of at most polynomial

growth if f(n) = O(nk), for some natural number k > 1

 A function f(n) is said to be of at most exponential

growth if there is a constant c, such that f(n) = O(cn),

and c > 1

 A function f(n) is said to be of at most factorial growth

if f(n) = O(n!).

Classification of Function : BIG O (2/2)

 A function f(n) is said to have constant running

time if the size of the input n has no effect on

the running time of the algorithm (e.g.,

assignment of a value to a variable). The

equation for this algorithm is f(n) = c

 Other logarithmic classifications:

 f(n) = O(n log n)

 f(n) = O(log log n)

CS3024-FAZ
22

-notation: Formally

 DEF2: A function t(n) is said to be in (g(n)),

denoted t(n)  (g(n)), if t(n) is bounded below

by some constant multiple of g(n) for all large n

 i.e. there exist some positive constant c and

some nonnegative integer n0, such that

t(n) ≥ cg(n) for all n ≥ n0

CS3024-FAZ
23

t(n)  (g(n)): Illustration

n
n0

d
o

e
s
n

't

m
a

tt
e

r
t(n)

cg(n)

CS3024-FAZ
24

Proving Example: n3  (n2)

 Remember DEF2: find c and n0, such that t(n) ≥

cg(n) for all n ≥ n0

 n3 ≥ n2 (for all n ≥ 0)  c=1, n0=0

 …

Lower Bound Notation

 We say InsertionSort’s run time is (n)

 In general a function

 f(n) is (g(n)) if  positive constants c and n0 such

that 0  cg(n)  f(n)  n  n0

 Proof:

 Suppose run time is an + b

• Assume a and b are positive (what if b is negative?)

 an  an + b

Big  Asymptotic Lower Bound

f(n)

c g(n)

• f(n)  c g(n) for all n  n0

• g(n) is called an

asymptotic lower bound of f(n).

• We write f(n)=(g(n))

• It reads f(n) is omega of g(n).

n0

Example of Asymptotic Lower Bound

f(n)=n2/2-7

c g(n)=n2/4

g(n)=n2

g(n)/4 = n2/4

= n2/2 – n2/4

 n2/2 – 9 for all n  6

< n2/2 – 7

Thus, f(n)= (g(n)).

6

g(n)=n2

Example: Big Omega

 Example: n 1/2 = (log n) .

Use the definition with c = 1 and n0 = 16.

Checks OK.

Let n ≥ 16 : n 1/2 ≥ (1) log n

if and only if n = (log n)2 by squaring both sides.

This is an example of polynomial vs. log.

Big Theta Notation

 Definition: Two functions f and g are said to be
of equal growth, f = Big Theta(g) if and only if
both

f=(g) and g = (f).

 Definition: f(n) = (g(n)) means  positive
constants c1, c2, and n0 such that

c1 g(n)  f(n)  c2 g(n)  n  n0

 If f(n) = O(g(n)) and f(n) = (g(n)) then f(n) = (g(n))

(e.g. f(n) = n2 and g(n) = 2n2)

CS3024-FAZ
30

-notation: Formally

 DEF3: A function t(n) is said to be in (g(n)),

denoted t(n)  (g(n)), if t(n) is bounded both

above and below by some constant multiple of

g(n) for all large n

 i.e there exist some positive constant c1 and c2

and some nonnegative integer n0, such that

c2g(n) ≤ t(n) ≤ c1g(n) for all n ≥ n0

CS3024-FAZ
31

t(n)  (g(n)): Illustration

n
n0

d
o

e
s
n

't

m
a

tt
e

r

t(n)

c1g(n)

c2g(n)

CS3024-FAZ
32

Proving Example: ½n(n-1)

(n2)
 Remember DEF3: find c1 and c2 and some

nonnegative integer n0, such that

c2g(n) ≤ t(n) ≤ c1g(n) for all n ≥ n0

 The upper bound: ½ n(n-1) = ½ n2 – ½ n ≤ ½ n2

(for all n ≥ 0)

 The lower bound: ½ n(n-1) = ½ n2 – ½ n ≥ ½ n2

- ½ n ½ n (for all n ≥ 2) = ¼ n2

 c1 = ½, c2 = ¼, n0 = 2

Theta, the Asymptotic Tight Bound

 Theta means that f is bounded above and below

by g; BigTheta implies the "best fit".

 f(n) does not have to be linear itself in order to

be of linear growth; it just has to be between two

linear functions,

Asymptotically Tight Bound

f(n)

c1 g(n)

• f(n) = O(g(n)) and f(n) = (g(n))

• g(n) is called an

asymptotically tight bound of f(n).

• We write f(n)=(g(n))

• It reads f(n) is theta of g(n).

n0

c2 g(n)

Other Asymptotic Notations

 A function f(n) is o(g(n)) if  positive constants c

and n0 such that

f(n) < c g(n)  n  n0

 A function f(n) is (g(n)) if  positive constants c

and n0 such that

c g(n) < f(n)  n  n0

 Intuitively,

– o() is like <

– O() is like 

– () is like >

– () is like 

– () is like =

Examples

1. 2n3 + 3n2 + n = 2n3 + 3n2 + O(n)

= 2n3 + O(n2 + n) = 2n3 + O(n2)

= O(n3) = O(n4)

2. 2n3 + 3n2 + n = 2n3 + 3n2 + O(n)

= 2n3 + (n2 + n)

= 2n3 + (n2) = (n3)

Example (cont.)

n3 = 503 * 729 3n = 350 * 729

n = n = log3 (729 * 350)

n = n = log3(729) + log3 350

n = 50 * 9 n = 6 + log3 350

n = 50 * 9 = 450 n = 6 + 50 = 56

 Improvement: problem size increased by 9 times for n3

algorithm but only a slight improvement in problem size

(+6) for exponential algorithm.

3 3 729*50

33 3 72950

More Examples

(a) 0.5n2 - 5n + 2 = Ω(n2).

Let c = 0.25 and n0 = 25.

0.5 n2 - 5n + 2 = 0.25(n2) for all n = 25

(b) 0.5 n2 - 5n + 2 = O(n2).

Let c = 0.5 and n0 = 1.

0.5(n2) = 0.5 n2 - 5n + 2 for all n = 1

(c) 0.5 n2 - 5n + 2 = Θ(n2)

from (a) and (b) above.

Use n0 = 25, c1 = 0.25, c2 = 0.5 in the definition.

More Examples

(d) 6 * 2n + n2 = O(2n).

Let c = 7 and n0 = 4.

Note that 2n = n2 for n = 4. Not a tight upper bound, but

it's true.

(e) 10 n2 + 2 = O(n4).

There's nothing wrong with this, but usually we try to get

the closest g(n). Better is to use O(n2).

Practical Complexity t < 250

0

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

Practical Complexity t < 500

0

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

Practical Complexity t < 1000

0

1000

1 3 5 7 9 11 13 15 17 19

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

Practical Complexity t < 5000

0

1000

2000

3000

4000

5000

1 3 5 7 9 11 13 15 17 19

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

CS3024-FAZ
44

Tugas (1)

1. True or false:
a. n(n+1)/2  O(n3)

b. n(n+1)/2  O(n2)

c. n(n+1)/2  (n3)

d. n(n+1)/2  (n)

2. Indicate the class (g(n)):
a. (n2+1)10

b. (10n2+7n+3) ½

c. 2n log (n+2)2+(n+2)2 log (n/2)

Tugas 1 : O-notation

3. Tentukan OoG dari masing-masing soal

a. f1(n) = 10 n + 25 n2

b. f2(n) = 20 n log n + 5 n

c. f3(n) = 12 n log n + 0.05 n2

d. f4(n) = n1/2 + 3 n log n

4.. True/false ?

(a) 0.25n2 - 5n + 2 = Ω(n2).

(b) 0.25n2 - 5n + 2 = O(n2).

(c) 0.25n2 - 5n + 2 = Θ(n2).

• O(n2)

• O(n log n)

• O(n2)

• O(n log n)

Tugas Kelompok

1. Kerjakan soal di hal 29 no 2.2-1 sd. 2.2-4

2. Tugas 2 s.d Tugas 6 di slide ini

3. Pengumpulan :

1. Tulis dikertas folio bergaris

2. Dikumpulkan minggu depan di kelas

3. KODE TUGAS :

DAA_A_1_1 (MT DAA, kelas A, Kelompok1, tugas

ke-1)

DAA_D_5_1

Tugas 2

Tugas 3

Tugas 4

CS3024-FAZ
50

Tugas 5

5. Prove that every polynomial

p(n) = akn
k + ak-1n

k-1 + … + a0 with ak > 0

belongs to (nk)

6. Prove that exponential functions an have
different orders of growth for different values
of base a > 0

Tugas 6: Examples (cont.)

7. Suppose a program P is O(n3), and a program Q

is O(3n), and that currently both can solve

problems of size 50 in 1 hour. If the programs are

run on another system that executes exactly 729

times as fast as the original system, what size

problems will they be able to solve?

Classifying functions by their

Asymptotic Growth Rates (1/2)

 asymptotic growth rate, asymptotic order, or

order of functions

 Comparing and classifying functions that ignores

constant factors and small inputs.

 O(g(n)), Big-Oh of g of n, the Asymptotic Upper

Bound;

 (g(n)), Omega of g of n, the Asymptotic Lower

Bound.

 (g(n)), Theta of g of n, the Asymptotic Tight

Bound; and

Example

 Example: f(n) = n2 - 5n + 13.

 The constant 13 doesn't change as n grows,

so it is not crucial. The low order term, -5n,

doesn't have much effect on f compared to

the quadratic term, n2.

We will show that f(n) = (n2) .

 Q: What does it mean to say f(n) = (g(n)) ?

 A: Intuitively, it means that function f is the

same order of magnitude as g.

Example (cont.)

 Q: What does it mean to say f1(n) = (1)?

 A: f1(n) = (1) means after a few n, f1 is

bounded above & below by a constant.

 Q: What does it mean to say f2(n) = (n log n)?

 A: f2(n) = (n log n) means that after a few n, f2
is bounded above and below by a constant

times n log n. In other words, f2 is the same

order of magnitude as n log n.

 More generally, f(n) = (g(n)) means that f(n) is

a member of (g(n)) where (g(n)) is a set of

functions of the same order of magnitude.

CS3024-FAZ
55

Useful Property

 Theorem:

If t1(n)  O(g1(n)) and t2(n)  O(g2(n)), then t1(n)

+ t2(n)  O(max{g1(n), g2(n)})

 The analogous assertions are true for the  and

 notations as well

CS3024-FAZ
56

Example

 Alg to check whether an array has identical

elements:

1. Sort the array

2. Scan the sorted array to check its consecutive

elements for equality

 (1) = ≤ ½n(n-1) comparison  O(n2)

 (2) = ≤ n-1 comparison  O(n)

 The efficiency of (1)+(2) = O(max{n2,n}) =

O(n2)

CS3024-FAZ
57

Using Limits for Comparing

OoG

 A ‘convenient’ method for comparing order of

growth of two specific functions

 Three principal cases:

 The first two cases  t(n)  O(g(n)); the last two

cases  t(n)  (g(n)); the second case alone 

t(n)  (g(n))












 g(n)OoG than larger a has that t(n)implies

 g(n) asOoG same thehas that t(n)implies c

g(n)OoG than smaller a has that t(n)implies 0

)(

)(
lim

ng

nt

n

CS3024-FAZ
58

Limit-based: why convenient?

 It can take advantage of the powerful calculus

techniques developed for computing limits, such

as

 L’Hopital’s rule

 Stirling’s formula

)('

)('
lim

)(

)(
lim

ng

nt

ng

nt

nn 
=

( n of valuelargefor 2!
n

e
nnn 

CS3024-FAZ
59

Example (1)

 Compare OoG of ½n(n-1) and n2.

 The limit = c  ½n(n-1)   (n2)

 Compare OoG of log2n and √n

 The limit = 0  log2n has smaller order of √n

(
2

1
1lim

2

1
lim

2

1)1(
lim 1

2

2

2

2
1

=-=
-

=
-


n

nnn n

nn

n

nn

0limlog2
)(log

lim
)'(

)'(log
lim

log
lim 2

2

1

1
222 ====

 n

n
e

e

n

n

n

n

n
n

n

nnn

CS3024-FAZ
60

Example (2)

 Compare OoG of n! and 2n.

 The limit =  n!  (2n)

(
=








===



n

nnn

n

nn

n

e
n

nnn e

n
n

e

n
n

nn

2
2lim

2
2lim

2

2
lim

2

!
lim 



Review Tugas n!

 Menghitung kompleksitas pada Faktorial
Function Faktorial (input n : integer) → integer

{menghasilkan nilai n!, n ≥ 0}

Algoritma

If n=0 then

Return 1

Else

Return n*faktorial (n-1)

Endif

 Kompleksitas waktu :

 untuk kasus basis, tidak ada operasi perkalian → (0)

 untuk kasus rekurens, kompleksitas waktu diukur dari jumlah perkalian (1)

ditambah kompleksitas waktu untuk faktorial (n-1)

Review Tugas n! (Lanjutan)

Kompleksitas waktu n! :

T(n)=1+T(n-1)

=T(n)=1+1+T(n-2)=2+T(n-2)

=T(n)=2+1+T(n-3)=3+T(n-3)

= …

= …

= n+T(0)

= n + 0

Jadi T(n) = n

T(n)∈ O(n)

Click to edit subtitle style

