

Drs. Achmad Ridok M.Kom Imam Cholissodin, S.Si., M.Kom M. Ali Fauzi, S.Kom., M.Kom

Pertemuan 03

 Ratih Kartika Dewi, ST, M.Kom
Contents

Asymptotic Notation

Contents

- Asymptotic Notations:
- O (big oh)
- Ω (big omega)
- Θ (big theta)
- Basic Efficiency Classes

In the following discussion...

- $\mathrm{t}(\mathrm{n}) \& \mathrm{~g}(\mathrm{n})$: any nonnegative functions defined on the set of natural numbers
- $\mathrm{t}(\mathrm{n}) \rightarrow$ an algorithm's running time
- Usually indicated by its basic operation count C(n)
- $\mathrm{g}(\mathrm{n}) \rightarrow$ some simple function to compare the count with

$O(g(n))$: Informally

- $O(\mathrm{~g}(\mathrm{n})$) is a set of all functions with a smaller or same order of growth as $\mathrm{g}(\mathrm{n})$
- Examples:
- $\mathrm{n} \in O\left(\mathrm{n}^{2}\right) ; 100 \mathrm{n}+5 \in O\left(\mathrm{n}^{2}\right)$
- $1 / 2 n(n-1) \in O\left(n^{2}\right)$
- $n^{3} \notin O\left(n^{2}\right) ; 0.0001 n^{3} \notin O\left(n^{2}\right) ; n^{4}+n+1 \notin O\left(n^{2}\right)$

$\Omega(\mathrm{g}(\mathrm{n}))$: Informally

- $\Omega(\mathrm{g}(\mathrm{n}))$ is a set of all functions with a larger or same order of growth as $\mathrm{g}(\mathrm{n})$
- Examples:
- $n^{3} \in \Omega\left(n^{2}\right)$
- $1 / 2 n(n-1) \in \Omega\left(n^{2}\right)$
- $100 n+5 \notin \Omega\left(n^{2}\right)$

O(g(n)): Informally

- $\Theta(\mathbf{g}(\mathbf{n}))$ is a set of all functions with a same order of growth as $g(n)$
- Examples:
- $a^{2}+b n+c ; a>0 \in \Theta\left(n^{2}\right) ; n^{2}+\sin n \in \Theta\left(n^{2}\right)$
- $1 / 2 n(n-1) \in \Theta\left(n^{2}\right) ; n^{2}+\log n \in \Theta\left(n^{2}\right)$
- $100 n+5 \notin \Theta\left(n^{2}\right) ; n^{3} \notin \Theta\left(n^{2}\right)$

O-notation: Formally

- DEF1: A function $t(n)$ is said to be in $O(g(n))$, denoted $\mathrm{t}(\mathrm{n}) \in O(\mathrm{~g}(\mathrm{n}))$, if $\mathrm{t}(\mathrm{n})$ is bounded above by some constant multiple of $\mathrm{g}(\mathrm{n})$ for all large n
- i.e. there exist some positive constant c and some nonnegative integer n_{0}, such that

$$
t(n) \leq c g(n) \text { for all } n \geq n_{0}
$$

$\mathbf{t}(\mathrm{n}) \in O(\mathrm{~g}(\mathrm{n}))$: Illustration

Proving Example: $100 \mathrm{n}+5$ € $O\left(n^{2}\right)$

- Remember DEF1: find c and n_{0}, such that $t(n) \leq$ $\operatorname{cg}(\mathrm{n})$ for all $\mathrm{n} \geq \mathrm{n}_{0}$
- $100 n+5 \leq 100 n+n($ for all $n \geq 5)=101 n \leq$ $101 n^{2} \rightarrow c=101, n_{0}=5$
- $100 n+5 \leq 100 n+5 n($ for all $n \geq 1)=105 n \leq$ $105 n^{2} \rightarrow c=105, n_{0}=1$

Big-Oh

- The O symbol was introduced in 1927 to indicate relative growth of two functions based on asymptotic behavior of the functions now used to classify functions and families of functions

Upper Bound Notation

- We say Insertion Sort's run time is $O\left(n^{2}\right)$
- Properly we should say run time is in $\mathrm{O}\left(\mathrm{n}^{2}\right)$
" Read O as "Big-O" (you'll also hear it as "order")
- In general a function
- $f(n)$ is $O(g(n))$ if \exists positive constants c and n_{0} such that $\mathrm{f}(\mathrm{n}) \leq c \cdot \mathrm{~g}(\mathrm{n}) \forall \mathrm{n} \geq n_{0}$
- e.g. if $f(n)=1000 n$ and $g(n)=n^{2}, n_{0} \geq 1000$ and c $=1$ then $f\left(n_{0}\right) \leq 1 . g\left(n_{0}\right)$ and we say that $f(n)=$ $\mathrm{O}(\mathrm{g}(\mathrm{n}))$

Asymptotic Upper Bound

- $f(n) \leq c g(n)$ for all $n \geq n_{0}$
- $g(n)$ is called an asymptotic upper bound of $f(n)$.
- We write $f(n)=O(g(n))$
- It reads $f(n)$ is big oh of $g(n)$.

Big-Oh, the Asymptotic Upper Bound

- This is the most popular notation for run time since we're usually looking for worst case time.
- If Running Time of Algorithm X is $\mathrm{O}\left(\mathrm{n}^{2}\right)$, then for any input the running time of algorithm X is at most a quadratic function, for sufficiently large n .
- e.g. $2 n^{2}=O\left(n^{3}\right)$.
- From the definition using $c=1$ and $n_{0}=2 . O\left(n^{2}\right)$ is tighter than $\mathrm{O}\left(\mathrm{n}^{3}\right)$.

Example 1

for all $n>6, \quad g(n)>1 \mathrm{f}(n)$.
Thus the function f is in the big-O of g. that is, $f(n)$ in $\mathrm{O}(g(n))$.

Example 2

There exists a $n_{0}=5$ s.t. for all $n>n_{0}, \mathrm{f}(n)<1 \mathrm{~g}(n)$. Thus, $f(n)$ is in $O(g(n))$.

Example 3

There exists a $n_{0}=5, c=3.5$, s.t. for all $n>n_{0}, f(n)<c h(n)$. Thus, $f(n)$ is in $O(h(n))$.

Example of Asymptotic Upper Bound

$$
\begin{aligned}
4 g(n) & =4 n^{2} \\
& =3 n^{2}+n^{2} \\
& \geq 3 n^{2}+9 \text { for all } n \geq 3 \\
& >3 n^{2}+5 \\
& =f(n)
\end{aligned}
$$

Thus, $f(n)=\mathrm{O}(g(n))$.

Exercise on O-notation

- Show that $3 n^{2}+2 n+5=O\left(n^{2}\right)$

$$
\begin{aligned}
10 n^{2} & =3 n^{2}+2 n^{2}+5 n^{2} \\
& \geq 3 n^{2}+2 n+5 \text { for } n \geq 1 \\
c=10 & , n_{0}=1
\end{aligned}
$$

Classification of Function : BIG O (1/2)

- A function $f(n)$ is said to be of at most logarithmic growth if $f(n)=O(\log n)$
- A function $f(n)$ is said to be of at most quadratic growth if $f(n)=O\left(n^{2}\right)$
- A function $f(n)$ is said to be of at most polynomial growth if $f(n)=O\left(n^{k}\right)$, for some natural number $k>1$
- A function $f(n)$ is said to be of at most exponential growth if there is a constant c , such that $\mathrm{f}(\mathrm{n})=\mathrm{O}\left(\mathrm{c}^{\mathrm{n}}\right)$, and $\mathrm{c}>1$
- A function $f(n)$ is said to be of at most factorial growth if $f(n)=O(n!)$.

Classification of Function : BIG O (2/2)

- A function $f(n)$ is said to have constant running time if the size of the input n has no effect on the running time of the algorithm (e.g., assignment of a value to a variable). The equation for this algorithm is $f(n)=c$
- Other logarithmic classifications:
- $f(n)=O(n \log n)$
- $f(n)=O(\log \log n)$

Ω-notation: Formally

- DEF2: A function $t(n)$ is said to be in $\Omega(g(n))$, denoted $t(n) \in \Omega(g(n))$, if $t(n)$ is bounded below by some constant multiple of $g(n)$ for all large n
- i.e. there exist some positive constant c and some nonnegative integer n_{0}, such that

$$
t(n) \geq c g(n) \text { for all } n \geq n_{0}
$$

$t(n) \in \Omega(g(n))$: Illustration

Proving Example: $n^{3} \in \Omega\left(n^{2}\right)$

- Remember DEF2: find c and n_{0}, such that $\mathrm{t}(\mathrm{n}) \geq$ $\operatorname{cg}(n)$ for all $n \geq n_{0}$
- $\mathrm{n}^{3} \geq \mathrm{n}^{2}($ for all $\mathrm{n} \geq 0) \rightarrow \mathrm{c}=1, \mathrm{n}_{0}=0$

Lower Bound Notation

- We say InsertionSort's run time is $\Omega(\mathrm{n})$
- In general a function
- $f(n)$ is $\Omega(g(n))$ if \exists positive constants c and n_{0} such that $0 \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \quad \forall \mathrm{n} \geq n_{0}$
- Proof:
- Suppose run time is an + b
- $a n \leq a n+b$

Big Ω Asymptotic Lower Bound

- $f(n) \geq c g(n)$ for all $n \geq n_{0}$
- $g(n)$ is called an asymptotic lower bound of $f(n)$.
- We write $f(n)=\Omega(g(n))$
- It reads $f(n)$ is omega of $g(n)$.

Example of Asymptotic Lower Bound

Example: Big Omega

- Example: $\mathrm{n}^{1 / 2}=\Omega$ ($\left.\log \mathrm{n}\right)$.

Use the definition with $\mathrm{c}=1$ and $\mathrm{n}_{0}=16$.

Checks OK.
Let $n \geq 16: n^{1 / 2} \geq(1) \log n$
if and only if $n=(\log n)^{2}$ by squaring both sides.
This is an example of polynomial vs. log.

Big Theta Notation

- Definition: Two functions f and g are said to be of equal growth, $\mathrm{f}=\operatorname{Big} \operatorname{Theta}(\mathrm{g})$ if and only if both
$\mathrm{f}=\Theta(\mathrm{g})$ and $\mathrm{g}=\Theta(\mathrm{f})$.
- Definition: $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$ means \exists positive constants $\mathrm{C}_{1}, \mathrm{c}_{2}$, and n_{0} such that

$$
c_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq c_{2} \mathrm{~g}(\mathrm{n}) \forall \mathrm{n} \geq n_{0}
$$

- If $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$ then $f(n)=\Theta(g(n))$

$$
\text { (e.g. } \left.f(n)=n^{2} \text { and } g(n)=2 n^{2}\right)
$$

©-notation: Formally

- DEF3: A function $t(n)$ is said to be in $\Theta(g(n))$, denoted $t(n) \in \Theta(g(n))$, if $t(n)$ is bounded both above and below by some constant multiple of $\mathrm{g}(\mathrm{n})$ for all large n
- i.e there exist some positive constant c_{1} and c_{2} and some nonnegative integer n_{0}, such that

$$
c_{2} g(n) \leq t(n) \leq c_{1} g(n) \text { for all } n \geq n_{0}
$$

$\mathbf{t}(\mathrm{n}) \in \Theta(\mathrm{g}(\mathrm{n}))$: Illustration

Proving Example: $1 / 2 n(n-1) \in$ $\theta\left(n^{2}\right)$

- Remember DEF3: find c_{1} and c_{2} and some nonnegative integer n_{0}, such that

$$
c_{2} g(n) \leq t(n) \leq c_{1} g(n) \text { for all } n \geq n_{0}
$$

- The upper bound: $1 / 2 n(n-1)=1 / 2 n^{2}-1 / 2 n \leq 1 / 2 n^{2}$ (for all $n \geq 0$)
- The lower bound: $1 / 2 n(n-1)=1 / 2 n^{2}-1 / 2 n \geq 1 / 2 n^{2}$ $-1 / 2 n 1 / 2 n($ for all $n \geq 2)=1 / 4 n^{2}$
- $C_{1}=1 / 2, C_{2}=1 / 4, n_{0}=2$

Theta, the Asymptotic Tight Bound

- Theta means that f is bounded above and below by g ; BigTheta implies the "best fit".
- $f(n)$ does not have to be linear itself in order to be of linear growth; it just has to be between two linear functions,

Asymptotically Tight Bound

- $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$
- $g(n)$ is called an asymptotically tight bound of $f(n)$.
- We write $f(n)=\Theta(g(n))$
- It reads $f(n)$ is theta of $g(n)$.

$$
c_{2} g(n)
$$

$f(n)$
$c_{1} g(n)$

Other Asymptotic Notations

- A function $f(n)$ is $o(g(n))$ if \exists positive constants c and n_{0} such that

$$
\mathrm{f}(\mathrm{n})<c \mathrm{~g}(\mathrm{n}) \forall \mathrm{n} \geq n_{0}
$$

- A function $f(n)$ is $\omega(g(n))$ if \exists positive constants c and n_{0} such that

$$
c \mathrm{~g}(\mathrm{n})<\mathrm{f}(\mathrm{n}) \forall \mathrm{n} \geq n_{0}
$$

- Intuitively,
-o() is like <
$-\omega()$ is like >
$-\Theta()$ is like $=$
-O() is like \leq
$-\Omega()$ is like \geq

Examples

$$
\text { 1. } \begin{aligned}
2 n^{3}+3 n^{2}+n & =2 n^{3}+3 n^{2}+O(n) \\
& =2 n^{3}+O\left(n^{2}+n\right)=2 n^{3}+O\left(n^{2}\right) \\
& =O\left(n^{3}\right)=O\left(n^{4}\right) \\
\text { 2. } 2 n^{3}+3 n^{2}+n & =2 n^{3}+3 n^{2}+O(n) \\
& =2 n^{3}+\Theta\left(n^{2}+n\right) \\
& =2 n^{3}+\Theta\left(n^{2}\right)=\Theta\left(n^{3}\right)
\end{aligned}
$$

Example (cont.)

$$
\begin{array}{ll}
n^{3}=50^{3} * 729 & 3^{n}=3^{50 *} 729 \\
n=\sqrt[3]{50^{3} * 729} & n=\log _{3}\left(729 * 3^{50}\right) \\
n=\sqrt[3]{50^{3}} \sqrt[3]{729} & n=\log _{3}(729)+\log _{3} 3^{50} \\
n=50 * 9 & n=6+\log _{3} 3^{50} \\
n=50 * 9=450 & n=6+50=56
\end{array}
$$

- Improvement: problem size increased by 9 times for n^{3} algorithm but only a slight improvement in problem size $(+6)$ for exponential algorithm.

More Examples

(a) $0.5 n^{2}-5 n+2=\Omega\left(n^{2}\right)$.

Let $\mathrm{C}=0.25$ and $\mathrm{n}_{0}=25$.
$0.5 n^{2}-5 n+2=0.25\left(n^{2}\right)$ for all $n=25$
(b) $0.5 n^{2}-5 n+2=O\left(n^{2}\right)$.

Let $\mathrm{c}=0.5$ and $\mathrm{n}_{0}=1$.
$0.5\left(n^{2}\right)=0.5 n^{2}-5 n+2$ for all $n=1$
(c) $0.5 \mathrm{n}^{2}-5 \mathrm{n}+2=\Theta\left(\mathrm{n}^{2}\right)$
from (a) and (b) above.
Use $\mathrm{n}_{0}=25, \mathrm{c}_{1}=0.25, \mathrm{c}_{2}=0.5$ in the definition.

More Examples

(d) $6^{*} 2^{n}+n^{2}=O\left(2^{n}\right)$.

Let $\mathrm{c}=7$ and $\mathrm{n}_{0}=4$.
Note that $2^{n}=n^{2}$ for $n=4$. Not a tight upper bound, but it's true.
(e) $10 n^{2}+2=O\left(n^{4}\right)$.

There's nothing wrong with this, but usually we try to get the closest $\mathrm{g}(\mathrm{n})$. Better is to use $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Practical Complexity t>250

Practical Complexity t>500

Practical Complexity t < 1000

Practical Complexity t < 5000

Tugas (1)

1. True or false:
a. $n(n+1) / 2 \in O\left(n^{3}\right)$
b. $n(n+1) / 2 \in O\left(n^{2}\right)$
c. $n(n+1) / 2 \in \Theta\left(n^{3}\right)$
d. $n(n+1) / 2 \in \Omega(n)$
2. Indicate the class $\Theta(\mathrm{g}(\mathrm{n}))$:
a. $\left(n^{2}+1\right)^{10}$
b. $\left(10 n^{2}+7 n+3\right)^{1 / 2}$
c. $2 n \log (n+2)^{2}+(n+2)^{2} \log (n / 2)$

Tugas 1 : O-notation

3. Tentukan OoG dari masing-masing soal
a. $\mathrm{f} 1(\mathrm{n})=10 \mathrm{n}+25 \mathrm{n}^{2}$
b. $f 2(n)=20 n \log n+5 n$
c. $f 3(n)=12 n \log n+0.05 n^{2}$
d. $f 4(n)=n^{1 / 2}+3 n \log n$
4.. True/false ?

- $O\left(\mathrm{n}^{2}\right)$
- $O(n \log n)$
- $O\left(n^{2}\right)$
- $O(n \log n)$
(a) $0.25 n^{2}-5 n+2=\Omega\left(n^{2}\right)$.
(b) $0.25 n^{2}-5 n+2=O\left(n^{2}\right)$.
(c) $0.25 n^{2}-5 n+2=\Theta\left(n^{2}\right)$.

Tugas Kelompok

1. Kerjakan soal di hal 29 no 2.2-1 sd. 2.2-4
2. Tugas 2 s.d Tugas 6 di slide ini
3. Pengumpulan:
4. Tulis dikertas folio bergaris
5. Dikumpulkan minggu depan di kelas
6. KODE TUGAS :

DAA_A_1_1 (MT DAA, kelas A, Kelompok1, tugas ke-1)
DAA_D_5_1

Tugas 2

3-2 Relative asymptotic growths

Indicate, for each pair of expressions (A, B) in the table below, whether A is O, o, Ω, ω, or Θ of B. Assume that $k \geq 1, \epsilon>0$, and $c>1$ are constants. Your answer should be in the form of the table with "yes" or "no" written in each box.

Tugas 3

$$
\begin{array}{cccccc}
\lg \left(\lg ^{*} n\right) & 2^{\lg ^{*} n} & (\sqrt{2})^{\lg n} & n^{2} & n! & (\lg n)! \\
\left(\frac{3}{2}\right)^{n} & n^{3} & \lg ^{2} n & \lg (n!) & 2^{2^{n}} & n^{1 / \lg n} \\
\ln \ln n & \lg ^{*} n & n \cdot 2^{n} & n^{\lg \lg n} & \ln n & 1 \\
2^{\lg n} & (\lg n)^{\lg n} & e^{n} & 4^{\lg n} & (n+1)! & \sqrt{\lg n} \\
\lg ^{*}(\lg n) & 2^{\sqrt{2 \lg n}} & n & 2^{n} & n \lg n & 2^{2^{n+1}}
\end{array}
$$

Tugas 4

3-4 Asymptotic notation properties
Let $f(n)$ and $g(n)$ be asymptotically positive functions. Prove or disprove each of the following conjectures.
a. $\quad f(n)=O(g(n))$ implies $g(n)=O(f(n))$.
b. $\quad f(n)+g(n)=\Theta(\min (f(n), g(n)))$.
c. $\quad f(n)=O(g(n))$ implies $\lg (f(n))=O(\lg (g(n)))$, where $\lg (g(n)) \geq 1$ and $f(n) \geq 1$ for all sufficiently large n.
d. $f(n)=O(g(n))$ implies $2^{f(n)}=O\left(2^{g(n)}\right)$.
e. $f(n)=O\left((f(n))^{2}\right)$.
f. $\quad f(n)=O(g(n))$ implies $g(n)=\Omega(f(n))$.
g. $\quad f(n)=\Theta(f(n / 2))$.
h. $f(n)+o(f(n))=\Theta(f(n))$.

Tugas 5

5. Prove that every polynomial $p(n)=a_{k} n^{k}+a_{k-1} n^{k-1}+\ldots+a_{0}$ with $a_{k}>0$ belongs to $\Theta\left(\mathrm{n}^{\mathrm{k}}\right)$
6. Prove that exponential functions a^{n} have different orders of growth for different values of base a > 0

Tugas 6: Examples (cont.)

7. Suppose a program P is $O\left(n^{3}\right)$, and a program Q is $\mathrm{O}\left(3^{n}\right)$, and that currently both can solve problems of size 50 in 1 hour. If the programs are run on another system that executes exactly 729 times as fast as the original system, what size problems will they be able to solve?

Classifying functions by their Asymptotic Growth Rates (1/2)

- asymptotic growth rate, asymptotic order, or order of functions
- Comparing and classifying functions that ignores constant factors and small inputs.
- $\mathrm{O}(\mathrm{g}(\mathrm{n}))$, Big-Oh of g of n , the Asymptotic Upper Bound;
- $\Omega(\mathrm{g}(\mathrm{n}))$, Omega of g of n , the Asymptotic Lower Bound.
- $\Theta(\mathrm{g}(\mathrm{n}))$, Theta of g of n , the Asymptotic Tight Bound; and

Example

- Example: $f(n)=n^{2}-5 n+13$.
- The constant 13 doesn't change as n grows, so it is not crucial. The low order term, $-5 n$, doesn't have much effect on f compared to the quadratic term, n^{2}. We will show that $f(n)=\Theta\left(n^{2}\right)$.
- Q: What does it mean to say $f(n)=\Theta(g(n))$?
- A: Intuitively, it means that function f is the same order of magnitude as g.

Example (cont.)

- Q: What does it mean to say $f_{1}(n)=\Theta(1)$?
- $A: f_{1}(n)=\Theta(1)$ means after a few n, f_{1} is bounded above \& below by a constant.
- Q: What does it mean to say $f_{2}(n)=\Theta(n \log n)$?
- $A: f_{2}(n)=\Theta(n \log n)$ means that after a few n, f_{2} is bounded above and below by a constant times $n \log n$. In other words, f_{2} is the same order of magnitude as $n \log n$.
- More generally, $f(n)=\Theta(g(n))$ means that $f(n)$ is a member of $\Theta(g(n))$ where $\Theta(g(n))$ is a set of functions of the same order of magnitude.

Useful Property

- Theorem:

```
If }\mp@subsup{\textrm{t}}{1}{}(\textrm{n})\inO(\mp@subsup{g}{1}{}(\textrm{n}))\mathrm{ and }\mp@subsup{\textrm{t}}{2}{}(\textrm{n})\inO(\mp@subsup{g}{2}{}(\textrm{n}))\mathrm{ , then t
+ th (n) \inO(max{g
```

- The analogous assertions are true for the Ω and Θ notations as well

Example

Alg to check whether an array has identical elements:

1. Sort the array
2. Scan the sorted array to check its consecutive elements for equality
(1) $=\leq 1 / 2 n(n-1)$ comparison $\rightarrow O\left(n^{2}\right)$
(2) $=\leq n-1$ comparison $\rightarrow O(n)$

The efficiency of $(1)+(2)=O\left(\max \left\{n^{2}, n\right\}\right)=$ $O\left(\mathrm{n}^{2}\right)$

Limits for Comparing

- A 'convenient' method for comparing order of growth of two specific functions
- Three principal cases:
$\lim _{n \rightarrow \infty} \frac{t(n)}{g(n)} \begin{cases}0 & \text { implies that } \mathrm{t}(\mathrm{n}) \text { has a smaller OoG than } \mathrm{g}(\mathrm{n}) \\ \mathrm{c} & \text { implies that } \mathrm{t}(\mathrm{n}) \text { has the same OoG as } \mathrm{g}(\mathrm{n}) \\ \infty & \text { implies that } \mathrm{t}(\mathrm{n}) \text { has a larger OoG than } \mathrm{g}(\mathrm{n})\end{cases}$
- The first two cases $\rightarrow \mathrm{t}(\mathrm{n}) \in O(\mathrm{~g}(\mathrm{n})$); the last two cases $\rightarrow \mathrm{t}(\mathrm{n}) \in \Omega(\mathrm{g}(\mathrm{n}))$; the second case alone \rightarrow $\mathrm{t}(\mathrm{n}) \in \Theta(\mathrm{g}(\mathrm{n}))$

vilfored: why convenient?

- It can take advantage of the powerful calculus techniques developed for computing limits, such as
- L'Hopital's rule

$$
\lim _{n \rightarrow \infty} \frac{t(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{t^{\prime}(n)}{g^{\prime}(n)}
$$

- Stirling's formula

$$
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \text { for large value of } n
$$

Example (1)

- Compare OoG of $1 / 2 n(n-1)$ and n^{2}.

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{2} n(n-1)}{n^{2}}=\frac{1}{2} \lim _{n \rightarrow \infty} \frac{n^{2}-n}{n^{2}}=\frac{1}{2} \lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)=\frac{1}{2}
$$

- The limit $=c \rightarrow 1 / 2 n(n-1) \in \Theta\left(n^{2}\right)$
- Compare OoG of $\log _{2} n$ and $\sqrt{ } n$

$$
\lim _{n \rightarrow \infty} \frac{\log _{2} n}{\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{\left(\log _{2} n\right)^{\prime}}{(\sqrt{n})^{\prime}}=\lim _{n \rightarrow \infty} \frac{\left(\log _{2} e\right) \frac{1}{n}}{\frac{1}{2 \sqrt{n}}}=2 \log _{2} e \lim _{n \rightarrow \infty} \frac{\sqrt{n}}{n}=0
$$

- The limit $=0 \rightarrow \log _{2} n$ has smaller order of $\sqrt{ } n$

reaple (2)

- Compare OoG of n ! and 2^{n}.
$\lim _{n \rightarrow \infty} \frac{n!}{2^{n}}=\lim _{n \rightarrow \infty} \frac{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}}{2^{n}}=\lim _{n \rightarrow \infty} \sqrt{2 \pi n} \frac{n^{n}}{2^{n} e^{n}}=\lim _{n \rightarrow \infty} \sqrt{2 \pi n}\left(\frac{n}{2 e}\right)^{n}=\infty$
- The limit $=\infty \rightarrow n!\in \Omega\left(2^{n}\right)$

Review Tugas n!

- Menghitung kompleksitas pada Faktorial

```
Function Faktorial (input n : integer) -> integer
{menghasilkan nilai n!, n \geq 0}
Algoritma
    If n=0 then
    Return 1
    Else
    Return n*faktorial (n-1)
```

Endif

- Kompleksitas waktu :
- untuk kasus basis, tidak ada operasi perkalian $\rightarrow(0)$
- untuk kasus rekurens, kompleksitas waktu diukur dari jumlah perkalian (1) ditambah kompleksitas waktu untuk faktorial (n-1)

$$
T(n)=\left\{\begin{array}{cl}
0 & , n=0 \\
T(n-1)+1 & , n>0
\end{array}\right.
$$

Review Tugas n! (Lanjutan)

Kompleksitas waktu n ! :
$T(n)=1+T(n-1)$
$=T(n)=1+1+T(n-2)=2+T(n-2)$
$=T(n)=2+1+T(n-3)=3+T(n-3)$
= ...
= ...
$=\mathrm{n}+\mathrm{T}(0)$
$=n+0$
Jadi $T(n)=n$
$T(n) \in \mathrm{O}(n)$

Thank You!

