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In the following discussion…

 t(n) & g(n): any nonnegative functions defined 

on the set of natural numbers

 t(n)  an algorithm’s running time

 Usually indicated by its basic operation count C(n)

 g(n)  some simple function to compare the 

count with
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O(g(n)): Informally

 O(g(n)) is a set of all functions with a smaller or 

same order of growth as g(n)

 Examples:

 n  O(n2); 100n + 5  O(n2)

 ½ n (n-1)  O(n2)

 n3  O(n2); 0.0001 n3  O(n2); n4+n+1  O(n2)


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(g(n)): Informally

 (g(n)) is a set of all functions with a larger or 

same order of growth as g(n)

 Examples:

 n3  (n2)

 ½ n (n-1)  (n2)

 100n + 5  (n2)

≥
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(g(n)): Informally

 (g(n)) is a set of all functions with a same 

order of growth as g(n)

 Examples:

 an2+bn+c; a>0  (n2); n2+sin n  (n2)

 ½ n (n-1)  (n2); n2+log n  (n2)

 100n + 5  (n2); n3  (n2)

=



CS3024-FAZ
8

O-notation: Formally

 DEF1: A function t(n) is said to be in O(g(n)), 

denoted t(n)  O(g(n)), if t(n) is bounded above

by some constant multiple of g(n) for all large n

 i.e. there exist some positive constant c and 

some nonnegative integer n0, such that

t(n) ≤ cg(n) for all n ≥ n0
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t(n)  O(g(n)): Illustration
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Proving Example: 100n + 5 

O(n2)

 Remember DEF1: find c and n0, such that t(n) ≤ 

cg(n) for all n ≥ n0

 100n + 5 ≤ 100n + n (for all n ≥ 5) = 101n ≤ 

101n2
 c=101, n0=5

 100n + 5 ≤ 100n + 5n (for all n ≥ 1) = 105n ≤ 

105n2
 c=105, n0=1

 …



Big-Oh

 The O symbol was introduced in 1927 to 

indicate relative growth of two functions based 

on asymptotic behavior of the functions now 

used to classify functions and families of 

functions



Upper Bound Notation

 We say Insertion Sort’s run time is O(n2)
 Properly we should say run time is in O(n2)

 Read O as “Big-O” (you’ll also hear it as “order”)

 In general a function
 f(n) is O(g(n)) if  positive constants c and n0 such 

that f(n)  c  g(n)  n  n0

 e.g. if f(n)=1000n and g(n)=n2, n0 > 1000 and c 
= 1 then f(n0) < 1.g(n0) and we say that f(n) = 
O(g(n))



Asymptotic Upper Bound

f(n)

g(n)

c g(n)
• f(n)  c g(n) for all n  n0

• g(n) is called an

asymptotic upper bound of f(n).

• We write f(n)=O(g(n))

• It reads f(n) is big oh of g(n).

n0



Big-Oh, the Asymptotic Upper Bound

 This is the most popular notation for run time 

since we're usually looking for worst case time. 

 If Running Time of Algorithm X is O(n2) , then 

for any input the running time of algorithm X is 

at most a quadratic function, for sufficiently 

large n. 

 e.g. 2n2 = O(n3) .

 From the definition using c = 1 and n0 = 2. O(n2) 

is tighter than O(n3).
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g(n)

f(n)

for all n>6,   g(n) >  1 f(n).  

Thus the function f is in the 

big-O of g.

that is,  f(n) in  O(g(n)).

Example 1



g(n)

f(n)

5

There exists a n0=5 s.t. for all 

n>n0, f(n) < 1 g(n).

Thus,  f(n) is in O(g(n)).

Example 2



There exists a n0=5, c=3.5,  s.t.  

for all n>n0, f(n) < c h(n).

Thus,  f(n) is in O(h(n)).

5

h(n)

f(n)

3.5 h(n)

Example 3



Example of Asymptotic Upper Bound

f(n)=3n2+5

g(n)=n2

4g(n)=4n2

4 g(n) = 4n2

= 3n2 + n2

 3n2 + 9 for all n  3

> 3n2 + 5

= f(n)

Thus, f(n)=O(g(n)).

3



Exercise on O-notation

 Show that 3n2+2n+5 = O(n2)

10 n2 = 3n2 + 2n2 + 5n2

 3n2 + 2n + 5 for n  1

c = 10, n0 = 1



Classification of Function : BIG O (1/2)

 A function f(n) is said to be of at most logarithmic 

growth if f(n) = O(log n)

 A function f(n) is said to be of at most quadratic 

growth if f(n) = O(n2)

 A function f(n) is said to be of at most polynomial 

growth if f(n) = O(nk), for some natural number k > 1

 A function f(n) is said to be of at most exponential 

growth if there is a constant c, such that f(n) = O(cn), 

and c > 1

 A function f(n) is said to be of at most factorial growth

if f(n) = O(n!).



Classification of Function : BIG O (2/2)

 A function f(n) is said to have constant running 

time if the size of the input n has no effect on 

the running time of the algorithm (e.g., 

assignment of a value to a variable). The 

equation for this algorithm is f(n) = c

 Other logarithmic classifications:   

 f(n) = O(n log n)

 f(n) = O(log log n)
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-notation: Formally

 DEF2: A function t(n) is said to be in (g(n)), 

denoted t(n)  (g(n)), if t(n) is bounded below

by some constant multiple of g(n) for all large n

 i.e. there exist some positive constant c and 

some nonnegative integer n0, such that

t(n) ≥ cg(n) for all n ≥ n0
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t(n)  (g(n)): Illustration
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Proving Example: n3  (n2)

 Remember DEF2: find c and n0, such that t(n) ≥ 

cg(n) for all n ≥ n0

 n3 ≥ n2 (for all n ≥ 0)  c=1, n0=0

 …



Lower Bound Notation

 We say InsertionSort’s run time is (n)

 In general a function

 f(n) is (g(n)) if  positive constants c and n0 such 

that 0  cg(n)  f(n)   n  n0

 Proof:

 Suppose run time is an + b

• Assume a and b are positive (what if b is negative?)

 an  an + b



Big  Asymptotic Lower Bound

f(n)

c g(n)

• f(n)  c g(n) for all n  n0

• g(n) is called an

asymptotic lower bound of f(n).

• We write f(n)=(g(n))

• It reads f(n) is omega of g(n).

n0



Example of Asymptotic Lower Bound

f(n)=n2/2-7

c g(n)=n2/4

g(n)=n2

g(n)/4 = n2/4

= n2/2 – n2/4 

 n2/2 – 9 for all n  6

< n2/2 – 7

Thus, f(n)= (g(n)).

6

g(n)=n2



Example: Big Omega

 Example: n 1/2 = ( log n) .

Use the definition with c = 1 and n0 = 16. 

Checks OK.

Let n ≥ 16 : n 1/2 ≥ (1) log n 

if and only if n = ( log n )2 by squaring both sides.

This is an example of polynomial vs. log.



Big Theta Notation

 Definition: Two functions f and g are said to be 
of equal growth, f = Big Theta(g) if and only if 
both 

f=(g) and g = (f).

 Definition:  f(n) = (g(n)) means  positive 
constants c1, c2, and n0 such that 

c1 g(n)  f(n)  c2 g(n)  n  n0

 If f(n) = O(g(n)) and f(n) = (g(n)) then f(n) = (g(n))

(e.g. f(n) = n2 and g(n) = 2n2)
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-notation: Formally

 DEF3: A function t(n) is said to be in (g(n)), 

denoted t(n)  (g(n)), if t(n) is bounded both 

above and below by some constant multiple of 

g(n) for all large n

 i.e there exist some positive constant c1 and c2

and some nonnegative integer n0, such that

c2g(n) ≤ t(n) ≤ c1g(n) for all n ≥ n0
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t(n)  (g(n)): Illustration
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Proving Example: ½n(n-1)

(n2)
 Remember DEF3: find c1 and c2 and some 

nonnegative integer n0, such that 

c2g(n) ≤ t(n) ≤ c1g(n) for all n ≥ n0

 The upper bound: ½ n(n-1) = ½ n2 – ½ n ≤ ½ n2 

(for all n ≥ 0)

 The lower bound:  ½ n(n-1) = ½ n2 – ½ n ≥ ½ n2

- ½ n ½ n (for all n ≥ 2) = ¼ n2

 c1 = ½,  c2 = ¼, n0 = 2



Theta, the Asymptotic Tight Bound

 Theta means that f is bounded above and below 

by g; BigTheta implies the "best fit".

 f(n) does not have to be linear itself in order to 

be of linear growth; it just has to be between two 

linear functions,



Asymptotically Tight Bound

f(n)

c1 g(n)

• f(n) = O(g(n)) and f(n) = (g(n))

• g(n) is called an

asymptotically tight bound of f(n).

• We write f(n)=(g(n))

• It reads f(n) is theta of g(n).

n0

c2 g(n)



Other Asymptotic Notations

 A function f(n) is o(g(n)) if  positive constants c

and n0 such that 

f(n) < c g(n)  n  n0

 A function f(n) is (g(n)) if  positive constants c

and n0 such that 

c g(n) < f(n)  n  n0

 Intuitively,

– o() is like < 

– O() is like 

– () is like > 

– () is like 

– () is like =



Examples

1.   2n3 + 3n2 + n   =   2n3 + 3n2 + O(n)

=   2n3 + O( n2 + n) = 2n3 + O( n2 )

=  O(n3 ) = O(n4)

2.   2n3 + 3n2 + n   =   2n3 + 3n2 + O(n)

=   2n3 + (n2 + n)

=   2n3 + (n2) = (n3)



Example (cont.)

n3 = 503 * 729 3n = 350 * 729

n  = n  = log3 (729 * 350)

n  = n  = log3(729) + log3 350

n  = 50 * 9                     n  = 6 + log3 350

n  = 50 * 9 = 450                         n  = 6 + 50 =  56

 Improvement: problem size increased by 9 times for n3

algorithm but only a slight improvement in problem size 

(+6) for exponential algorithm.

3 3 729*50

33 3 72950



More Examples

(a) 0.5n2 - 5n + 2 = Ω( n2). 

Let c = 0.25 and n0 = 25.

0.5 n2 - 5n + 2 = 0.25( n2) for all n = 25

(b) 0.5 n2 - 5n + 2 = O( n2). 

Let c = 0.5 and n0 = 1.

0.5( n2) = 0.5 n2 - 5n + 2 for all n = 1

(c) 0.5 n2 - 5n + 2 = Θ( n2) 

from (a) and (b) above.

Use n0 = 25, c1 = 0.25, c2 = 0.5 in the definition.



More Examples

(d) 6 * 2n + n2 = O(2n). 

Let c = 7 and n0 = 4.

Note that 2n = n2 for n = 4. Not a tight upper bound, but 

it's true.

(e) 10 n2 + 2 = O(n4).

There's nothing wrong with this, but usually we try to get 

the closest g(n).  Better is to use O(n2 ).



Practical Complexity t < 250 

0

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(n) = n

f(n) = log(n) 

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂



Practical Complexity t < 500

0

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(n) = n

f(n) = log(n) 

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂



Practical Complexity t < 1000

0

1000

1 3 5 7 9 11 13 15 17 19

f(n) = n

f(n) = log(n) 

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂



Practical Complexity t < 5000

0

1000

2000

3000

4000

5000

1 3 5 7 9 11 13 15 17 19

f(n) = n

f(n) = log(n) 

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂
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Tugas (1)

1. True or false: 
a. n(n+1)/2  O(n3)

b. n(n+1)/2  O(n2)

c. n(n+1)/2  (n3)

d. n(n+1)/2  (n)

2. Indicate the class (g(n)):
a. (n2+1)10

b. (10n2+7n+3) ½

c. 2n log (n+2)2+(n+2)2 log (n/2)



Tugas 1 : O-notation

3.   Tentukan OoG dari masing-masing soal

a. f1(n) = 10 n + 25 n2

b. f2(n) = 20 n log n + 5 n

c. f3(n) = 12 n log n + 0.05 n2

d. f4(n) = n1/2 + 3 n log n

4..   True/false ?

(a) 0.25n2 - 5n + 2 = Ω( n2). 

(b) 0.25n2 - 5n + 2 = O( n2). 

(c) 0.25n2 - 5n + 2 = Θ( n2).

• O(n2)

• O(n log n)

• O(n2) 

• O(n log n)



Tugas Kelompok

1. Kerjakan soal di hal 29 no 2.2-1 sd. 2.2-4

2. Tugas 2 s.d Tugas 6 di slide ini

3. Pengumpulan :

1. Tulis dikertas folio bergaris

2. Dikumpulkan minggu depan di kelas

3. KODE TUGAS :  

DAA_A_1_1 (MT DAA, kelas A, Kelompok1, tugas

ke-1)

DAA_D_5_1



Tugas 2



Tugas 3



Tugas 4
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Tugas 5

5. Prove that every polynomial 

p(n) = akn
k + ak-1n

k-1 + … + a0 with ak > 0

belongs to (nk)

6.  Prove that exponential functions an have 
different orders of growth for different values 
of base a > 0



Tugas 6: Examples (cont.)

7. Suppose a program P is O(n3), and a program Q 

is O(3n), and that currently both can solve 

problems of size 50 in 1 hour. If the programs are 

run on another system that executes exactly 729 

times as fast as the original system, what size 

problems will they be able to solve?



Classifying functions by their

Asymptotic Growth Rates (1/2)

 asymptotic growth rate, asymptotic order, or 

order of functions 

 Comparing and classifying functions that ignores 

constant factors and small inputs. 

 O(g(n)), Big-Oh of g of n, the Asymptotic Upper 

Bound;

 (g(n)), Omega of g of n, the Asymptotic Lower 

Bound.

 (g(n)), Theta of g of n, the Asymptotic Tight 

Bound; and



Example

 Example: f(n) = n2 - 5n + 13.

 The constant 13 doesn't change as n grows, 

so it is not crucial. The low order term, -5n, 

doesn't have much effect on f compared to 

the quadratic term, n2.

We will show that f(n) = (n2) .

 Q: What does it mean to say f(n) = (g(n)) ?

 A: Intuitively, it means that function f is the 

same order of magnitude as g.



Example (cont.)

 Q: What does it mean to say f1(n) = (1)?

 A: f1(n) = (1) means after a few n, f1 is 

bounded above & below by a constant.

 Q: What does it mean to say f2(n) = (n log n)?

 A: f2(n) = (n log n) means that after a few n, f2
is bounded above and below by a constant 

times n log n. In other words, f2 is the same 

order of magnitude as n log n.

 More generally, f(n) = (g(n)) means that f(n) is 

a member of (g(n)) where (g(n)) is a set of 

functions of the same order of magnitude. 
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Useful Property

 Theorem: 

If t1(n)  O(g1(n)) and t2(n)  O(g2(n)), then t1(n) 

+ t2(n)  O(max{g1(n), g2(n)})

 The analogous assertions are true for the  and 

 notations as well



CS3024-FAZ
56

Example

 Alg to check whether an array has identical 

elements:

1. Sort the array 

2. Scan the sorted array to check its consecutive 

elements for equality

 (1) = ≤ ½n(n-1) comparison  O(n2)

 (2) = ≤ n-1 comparison  O(n)

 The efficiency of (1)+(2) = O(max{n2,n}) = 

O(n2)



CS3024-FAZ
57

Using Limits for Comparing 

OoG

 A ‘convenient’ method for comparing order of 

growth of two specific functions

 Three principal cases:

 The first two cases  t(n)  O(g(n)); the last two 

cases  t(n)  (g(n)); the second case alone 

t(n)  (g(n))












  g(n)OoG than larger  a has  that t(n)implies   

    g(n) asOoG  same  thehas  that t(n)implies   c

g(n)OoG than smaller  a has  that t(n)implies   0
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nt
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Limit-based: why convenient?

 It can take advantage of the powerful calculus 

techniques developed for computing limits, such 

as

 L’Hopital’s rule

 Stirling’s formula

)('
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lim
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lim
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Example (1)

 Compare OoG of ½n(n-1) and n2.

 The limit = c  ½n(n-1)   (n2 )

 Compare OoG of log2n and √n

 The limit = 0  log2n has smaller order of √n
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Example (2)

 Compare OoG of n! and 2n.

 The limit =  n!  (2n )
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Review Tugas n!

 Menghitung kompleksitas pada Faktorial
Function Faktorial (input n : integer) → integer 

{menghasilkan nilai n!, n ≥ 0} 

Algoritma

If n=0 then 

Return 1

Else 

Return n*faktorial (n-1) 

Endif

 Kompleksitas waktu : 

 untuk kasus basis, tidak ada operasi perkalian → (0) 

 untuk kasus rekurens, kompleksitas waktu diukur dari jumlah perkalian (1) 

ditambah kompleksitas waktu untuk faktorial (n-1)



Review Tugas n! (Lanjutan)

Kompleksitas waktu n! :

T(n)=1+T(n-1)

=T(n)=1+1+T(n-2)=2+T(n-2)

=T(n)=2+1+T(n-3)=3+T(n-3)

= …

= …

= n+T(0)

= n + 0 

Jadi T(n) = n 

T(n)∈ O(n)
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