PTI

PROGRAM TEKNOLOGI INFORMASI DAN ILMU KOMPUTER|

-4

yS|s Igcilthm

Drs. Achmad Ridok M.Kom
Imam Cholissodin, S.Si., M.Kom
M. Ali Fauzi, S.Kom., M.Kom
Ratih Kartika Dewi, ST, M.Kom




. A
' p Contents

Asymptotic Notation



_ 28

& Contents

= Asymptotic Notations:
= O (big oh)
= ) (big omega)
= O (big theta)
= Basic Efficiency Classes



In the following discussion...

= {(n) & g(n): any nonnegative functions defined
on the set of natural numbers

= {(n) = an algorithm’s running time
= Usually indicated by its basic operation count C(n)

= g(n) = some simple function to compare the
count with



_ A8

%% O(g(n)): Informally

= O(g(n)) is a set of all functions with a smaller or
same order of growth as g(n)

= Examples:
= n e O(n?); 100n +5 € O(n?)
= 5.n(n-1) € O(n?)
= n3 ¢ O(n?); 0.0001 n® ¢ O(n?); n*+n+1 ¢ O(n?)

<



_ A8

| p Q(g(n)): Informally

= QQ(g(n)) is a set of all functions with a larger or
same order of growth as g(n)

= Examples:
= nd e Q(n?)
= 5.n (n-1) € Q(n?)
= 100n +5 ¢ Q(n?)

IV



_ A8

| p ®(g(n)): Informally

= O(g(n)) is a set of all functions with a same
order of growth as g(n)

= Examples:
= an?+bn+c; a>0 € O(n?); n?+sin n € B(n?)
= 5n (n-1) € ©(n?); n?+log n € B(n?)
= 100n +5 ¢ ©(n?); n3 ¢ O(n?)



_ A8

&) O-notation: Formally

= DEF1: A function t(n) is said to be in O(g(n)),
denoted t(n) € O(g(n)), if t(n) is bounded above
by some constant multiple of g(n) for all large n

" |.e. there exist some positive constant ¢ and
some nonnegative integer n,, such that

t(n) £ cg(n) for all n =2 n,



t(n) € O(g(n)): lllustration




= Remember DEF1: find c and n,, such that t(n) <
cg(n) for all n =2 n,

" 100n+5=<100n+n(foralln=5)=101n <
101n? - ¢=101, ny,=5

= 100n+5=<100n+5n (foralln=1)=105n <
105n? - ¢=105, ny,=1

10



" The O symbol was introduced in 1927 to
Indicate relative growth of two functions based
on asymptotic behavior of the functions now
used to classify functions and families of

functions

-‘ Eé’




' |
-

{, & Upper Bound Notation

= We say Insertion Sort’s run time is O(n?)
= Properly we should say run time is in O(n?)
= Read O as “ " (you'll also hear it as “order”)

= |n general a function

= f(n) is O(g(n)) if 3 positive constants ¢ and n, such
that f(n) <c - g(n) Vn>n,

" e.g. if f(nN)=1000n and g(n)=n2, n, > 1000 and c
=1 then f(ny) < 1.g(ny) and we say that f(n) =

O(g(n))



_ A

» .;" Asymptotic Upper Bound

c g(n)
* f(n) < c g(n) for all n > n,

* g(n) is called an

asymptotic upper bound of f(n). f(n)
* We write f(n)=0(g(n))
* [t reads f(n) is big oh of g(n).

g(n)



_ A8

|8 gv Big-Oh, the Asymptotic Upper Bound

= This is the most popular notation for run time
since we're usually looking for worst case time.

" |f Running Time of Algorithm X is O(n?) , then
for any input the running time of algorithm X is
at most a quadratic function, for sufficiently
large n.

" e.g.2n%2=0(nd).

" From the definition using ¢ =1 and ny = 2. O(n?)
is tighter than O(n3).



_ 28

|8 ,;" Example 1

g(n)

/ | k

for all n>6, g(n)> 1 f(n).
Thus the function f is in the
big-O of g.

thatis, f(n) in O(g(n)).



_ 28

|8 ,;" Example 2

g(n)

There exists a n,=5 s.t. for all
n>n,, f(n) <1 g(n).

Thus, f(n) is in O(g(n)). f(n)



_ 28

' ## Example 3
.

3.5 h(n)
There exists a n,=5, c=3.5, s.t.
for all n>ng, f(n) < c h(n).
Thus, f(n) is in O(h(n)). f(n)

h(n)



) §
-

%7 Example of Asymptotic Upper Bound
L/ ‘

4g(n)=4n?
4 g(n) = 4n?
= 3n2 + n?

—2n2
>3n2+9 foralln>3 f(n)=3n"+5
>3n?+5
= f(n) |

Thus, f(n)=0(g(n)). |

/ : g(n):n2




_ 28

%@ Exercise on O-notation

= Show that 3n?+2n+5 = O(n?)

10 n2 =3n2+ 2n? + 5n2
>3n2+2n+5forn>1

c=10,n,=1



' |
-
!

= A function f(n) is said to be of at most logarithmic
growth if f(n) = O(log n)

= A function f(n) is said to be of at most quadratic
growth if f(n) = O(n?)

= A function f(n) is said to be of at most polynomial
growth if f(n) = O(nX), for some natural number k > 1

= A function f(n) is said to be of at most exponential
growth if there is a constant ¢, such that f(n) = O(c"),
andc>1

= A function f(n) is said to be of at most factorial growth
iIf f(n) = O(n!).



A j\.;
|

| 2y Classification of Function : BIG O (2/2)
, A&~

= A function f(n) Is said to have constant running
time if the size of the input n has no effect on
the running time of the algorithm (e.qg.,
assignment of a value to a variable). The
equation for this algorithm is f(n) = c

= Other logarithmic classifications:
= f(n) = O(n log n)
= f(n) = O(log log n)



_ A8

. gv Q-notation: Formally

= DEF2: A function t(n) is said to be in Q(g(n)),
denoted t(n) € Q(g(n)), if t(n) iIs bounded below
by some constant multiple of g(n) for all large n

" |.e. there exist some positive constant ¢ and

some nonnegative integer n,, such that
t(n) 2 cg(n) for all n =2 n,

22



t(n) € Q(g(n)): lllustration

23



_ 28

v~ i . N3 2
Q@0 Proving Example: n® e Q(n?)

= Remember DEF2: find ¢ and n,, such that t(n) 2
cg(n) for all n =2 n,

" n3=n?(foralln=0)-> c=1, ny=0

24



_ 28

%@ Lower Bound Notation

= We say InsertionSort’s run time is Q(n)

= |n general a function

= f(n) is ©(g(n)) if 3 positive constants ¢ and n, such
that 0 <c.g(n) <f(n) ¥ nx>n,

= Proof:
= Suppose runtimeisan+Db

=an<an-+Db



_ 28

&) Big Q Asymptotic Lower Bound

* f(n) > c g(n) for all n > n,
* g(n) is called an
asymptotic lower bound of f(n). f(n)
« We write f(n)=Q(g(n))
* It reads f(n) is omega of g(n).

c g(n)



) §
|

| 9 p Example of Asymptotic Lower Bound
L/ W

g(n)/4 = n%/4 g(n)=n®
=n?/2 — n?/4
<n?/2-9foralln>6 f(N)=n2/2-7
<n?2-7

Thus, f(n)= Q(g(n)).

c g(n)=n?/4




_ 28

| {* Example: Big Omega

= Example: n 72 =Q( logn) .
Use the definition with ¢ = 1 and ny = 16.

Checks OK.

Lletn=216:n122> (1) logn

if and only if n = ( log n )? by squaring both sides.
This is an example of polynomial vs. log.



_ A8

&) Big Theta Notation

= Definition: Two functions f and g are said to be
of equal growth, f = Big Theta(qg) if and only Iif
both

f=0(g) and g = O(f).
= Definition: f(n) = ®(g(n)) means 3 positive
constants c,4, C,, and ny such that
c, g(n) <f(n) <c,g(n) v n=n,

= |f f(n) = O(g(n)) and f(n) = Q(g(n)) then f(n) = G®(g(n))

(e.g. f(n) = n? and g(n) = 2n?)



_ A8

. gv ®-notation: Formally

= DEF3: A function t(n) is said to be in ®(g(n)),
denoted t(n) € ©(g(n)), If t(n) is bounded both
above and below by some constant multiple of
g(n) for all large n

= |.e there exist some positive constant ¢, and c,

and some nonnegative integer n,, such that
c,g(n) £t(n) < c,g(n) for all n 2 n,

30



t(n) € ®(g(n)): lllustration

31



= Remember DEF3: find ¢, and ¢, and some
nonnegative integer n,, such that
c,g(n) £t(n) < c,g(n) for all n 2 n,

" The upper bound: %2 n(n-1) =% n?—-"%n < % n?
(foralln = 0)

" The lower bound: ¥2n(n-1) =% n?-"%n=%n?
-Y2an’zn (foralln=2)="%n?

. C1:1/2, C2:1/4, n0:2

32



_ A8

| gv Theta, the Asymptotic Tight Bound

= Theta means that f Is bounded above and below
by g; BigTheta implies the "best fit".

= f(n) does not have to be linear itself in order to

be of linear growth; it just has to be between two
linear functions,



_ A8

& Asymptotically Tight Bound

*f(n) = O(g(n)) and f(n) = (g(n)) ¢, g(n)
* g(n) is called an
asymptotically tight bound of f(n).
* We write f(n)=0(g(n))
« It reads f(n) is theta of g(n). f(n)

C, g(n)



_ A8

%@ Other Asymptotic Notations

= A function f(n) is o(g(n)) if 3 positive constants c
and n, such that

f(n) <cg(n) v n=>n,

= A function f(n) is w(g(n)) If 3 positive constants c
and n, such that

cg(n) <f(n) V n>n,
= |ntuitively,



_ A8

1. 2n®+3n2+n

2. 2n*+3n2+n

‘% Examples
B N

2n3 + 3n? + O(n)
2N+ O(n?2+n)=2n®+0(n?)
O(n3) = 0O(n4)

2n3 + 3n? + O(n)
2n3 + ©(n? + n)
2n3 + ©(n?) = O(n3)



_ 28

1 (0 Example (cont.)

n3 =503 * 729 3n =350 * 729

n = 3/50°*729 n = log, (729 * 3%0)

n = 3/50%3/729 n =log,;(729) + log, 3%
n =50*9 n =6 +log; 3°°

n =50*9 =450 n =6+50= 56

" |mprovement: problem size increased by 9 times for n3
algorithm but only a slight improvement in problem size
(+6) for exponential algorithm.



_ 28

%@ More Examples

(@) 0.5n2 - 5n + 2 = Q( n?).
Let c = 0.25 and n, = 25.
0.5n?2-5n+2=0.25(n? foralln=25

(b) 0.5 n?-5n + 2 =0( n?).
Letc=0.5and ny = 1.
0.5(n?)=0.5n?-5n+2foralln=1

() 0.5n%2-5n+ 2 =0(n?
from (a) and (b) above.
Use n, = 25, ¢, = 0.25, ¢, = 0.5 In the definition.



_ 28

%@ More Examples

(d) 6 * 2" + n2 = O(2").
Let c =7 and ny = 4.

Note that 2" = n? for n = 4. Not a tight upper bound, but
it's true.

(€) 10 N2 + 2 = O(n%).
There's nothing wrong with this, but usually we try to get
the closest g(n). Better is to use O(n? ).



_ 28

& Practical Complexity t < 250

250

—e—f(n)=n
—=—f(n) = log(n)
f(n) = n log(n)
f(n) = n"2
—x— f(n) = "3
—e—f(n) = 2n

1 23 456 7 8 91011121314151617 181920




_ 28

%@ Practical Complexity t < 500

500

—e—f(n)=n

—=— f(n) = log(n)
f(n) = n log(n)
f(n) = n"2

—»—f(n) = n"3

—e—f(n) = 2n

0 - A o S s === s aar]

1 23 456 7 8 91011121314151617 181920




_ A

%@ Practical Complexity t < 1000

1000

—o—1f(n) =n
—=—f(n) = log(n)
f(n) = n log(n)
f(n) = "2
—x—f(n) = n"3
—o—f(n) = 2

0 - S i e e e




.ok

& Practical Complexity t < 5000

5000 j /
4000

/ / —o—1f(n) = n

3000 —=—f(n) = log(n)
f(n) = n log(n)

//// f(n) = "2

2000 —x—f(n) = n"3
—e—f(n) = 2"
1000
U S EaasAna A AT ASTARED SRR AR LA R LA A

1 3 5 7 9 11 13 15 17 19




_ 28

®@ Tugas (1)

1. True or false:
a. n(n+1)/2 € O(n3)
b. n(n+1)/2 € O(n?)
c. n(n+1l)/2 € ©(n3)
d. n(n+l)/2 € Q(n)
2. Indicate the class ®(g(n)):
a. (n%+1)10
b. (10n?+7n+3) *
c. 2nlog (n+2)?+(n+2)? log (n/2)

44



_ A8

%@ Tugas 1: O-notation

3. Tentukan OoG dari masing-masing soal
a. fi(n)=10n+ 25n? . O(nZ)
b. f2(n)=20nlogn+5n
c. f3(n)=12nlogn + 0.05 n? * O(n Iog n)
d. f4(n)=n¥2+3nlogn 0 O(n2)
* O(nlogn)

4.. Truelfalse ?

(@) 0.25n2-5n+ 2 =Q( n?).
(b) 0.25n2-5n + 2 = O( n?).
(c) 0.25n2-5n + 2 = O( n?).



_ A8

‘% Tugas Kelompok
(4 k

1. Kerjakan soal di hal 29 no 2.2-1 sd. 2.2-4
2. Tugas 2 s.d Tugas 6 di slide ini

3. Pengumpulan :
1. Tulis dikertas folio bergaris
2. Dikumpulkan minggu depan di kelas
3. KODE TUGAS:
DAA A 1 1 (MT DAA, kelas A, Kelompok1, tugas

ke-1)
DAA D51



3-2

Relative asymptotic growths

Indicate, for each pair of expressions (A, B) in the table below, whether A 1s O, o,
Q,w,or®of B. Assume thatk > 1,¢ > 0, and ¢ > 1 are constants. Your answer
should be in the form of the table with “yes” or “no™ written in each box.

a.

A B 0 0 Q 0 ®
] g}‘ n n*
nk "
ﬁ ”:«;inﬂ
o 2
”Igi {"IH”
lg(n!) lg(n")




_ A8

1 Tugas 3
( .

o

y n Ne

(2)" o lgtn lg(nl)  2F pllen
Inlnn  lg'n 02" nEE" Inn ]

2 (lgn)e" " 45 (1) Jlgn

o

. n+l
lo*(Ign) 2V¥" ™ nlgn 2



3-4 Asymplolic notation properties
Let f(n)and g(n) be asymptotically positive functions. Prove or disprove each of
the following conjectures.

il.

b.

C.

d.

h.

f(n)= O(g(n)) imphes g(n) = O(f(n)).
f(n)+ g(n) =(mimn(f(n). g(n))).

f(n) = O(g(n)) implies lg( f(n)) = O(lg(g(n))), where lg(g(n)) = 1 and
f(n) = 1 for all sufficiently large n.

f(n) = O(g(n)) implies 2/™ = O (25™).
f(n) = 0 ((f(n)?).

f(n) = O(g(n)) implies g(n) = Q(f(n)).
f(n)= O(f(n/2)).

f(n)+o(f(n)) = O(f(n)).



_ 28

‘%) Tugas 5
¢ ‘

5. Prove that every polynomial
p(n) =ank+a, nkt+ . . +a,witha >0
belongs to ©(n¥)

6. Prove that exponential functions a" have
different orders of growth for different values
of basea >0

50



_ A8

. gv Tugas 6: Examples (cont.)

7. Suppose a program P is O(n3), and a program Q
Is O(3"), and that currently both can solve
problems of size 50 in 1 hour. If the programs are
run on another system that executes exactly 729
times as fast as the original system, what size
problems will they be able to solve?



= asymptotic growth rate, asymptotic order, or
order of functions

= Comparing and classifying functions that ignores
constant factors and small inputs.

= O(g(n)), Big-Oh of g of n, the Asymptotic Upper
Bound,;

= (g(n)), Omega of g of n, the Asymptotic Lower
Bound.

= ®(g(n)), Theta of g of n, the Asymptotic Tight
Bound; and



_ A8

% Example
[ 3

= Example: f(n) = n?-5n + 13.
" The constant 13 doesn't change as n grows,
so it Is not crucial. The low order term, -5n,

doesn't have much effect on f compared to
the quadratic term, n2.

We will show that f(n) = ®(n?) .

= Q: What does it mean to say f(n) = ©(g(n)) ?

= A: Intuitively, it means that function f is the
same order of magnitude as g.



_ A8

i (2 Example (cont.)

= Q: What does it mean to say f,(n) = ®(1)?

= A:f,(n) = ©(1) means after a few n, f; Is
bounded above & below by a constant.

= Q: What does it mean to say f,(n) = ®(n log n)?

= A:f,(n) = ©(n log n) means that after a few n, f,
IS bounded above and below by a constant

times n log n. In other words, f, Is the same
order of magnitude as n log n.

= More generally, f(n) = ®(g(n)) means that f(n) Is
a member of ®(g(n)) where ®(g(n)) Is a set of
functions of the same order of magnitude.



_ 28

. gv Useful Property

" Theorem:
I t,(n) € O(9,(n)) and t,(n) € O(g,(n)), then t;(n)
+1,(n) € O(max{g,(n), g,(n)})

®= The analogous assertions are true for the €2 and
©® notations as well

55



_ A8

% Example
[ 3

= Alg to check whether an array has identical
elements:
1. Sort the array

2. Scan the sorted array to check its consecutive
elements for equality

" (1) = <%n(n-1) comparison 2 O(n?)

"= (2) =<n-1comparison = O(n)

" The efficiency of (1)+(2) = O(max{n?,n}) =
O(n?)

56



) §
|

3ty Limits for Comparing

Y
L ‘
y

= A ‘convenient’ method for comparing order of
growth of two specific functions

= Three principal cases:

(0 implies that t(n)has a smaller OoG thang(n)
c Implies that t(n)has the same OoG as g(n)
(o Implies that t(n)has a larger OoG thang(n)

jim 1)
== g(n)

" The first two cases = t(n) € O(g(n)); the last two
cases =2 t(n) € Q(g(n)); the second case alone =

t(n) € ©(g(n))

57



= |t can take advantage of the powerful calculus
techniques developed for computing limits, such

= |’Hopital’s rule

= Stirling’s formula

nl~~/2zn(2) for large value of n

58



= Compare 0OoG of ¥2n(n-1) and nZ.

1 2 _
lim 2 n(n2 1) 1“ n anl. (1 l)_1

N—»0 N 2 no0 N ? n—ow E

= The limit = ¢ 2 %n(n-1) € © (n?)

= Compare 00G of log,n and Vn

1
lim log, N _ (Iogzn) = lim (Iogz &) =2log, ellmﬂ 0

N—00 \/ﬁ —)oo (\/7) N—00 2\/_ n—wo N

= The limit = 0 = log,n has smaller order of Vn

59



| n
||m%=|im“2’;(e) _ lim +/2m _nm\/ ( j

= The limit =0 2 n! € Q(2")

60



= Menghitung kompleksitas pada Faktorial

Function Faktorial (input n : integer) - integer

{menghasilkan nilai n!, n 2 0}
Algoritma
If n=0 then
Return 1
Else

Return n*faktorial (n-1)
Endif
= Kompleksitas waktu :

= untuk kasus basis, tidak ada operasi perkalian — (0)

= untuk kasus rekurens, kompleksitas waktu diukur dari jumlah perkalian (1)
ditambah kompleksitas waktu untuk faktorial (n-1)

. 0 =10
T(n)=
| IT'in-1)+1 .n=>0



) §
|

| 8 ) Review Tugas n! (Lanjutan)
4 .

Kompleksitas waktu n! :
T(n)=1+T(n-1)
=T(n)=1+1+T(n-2)=2+T(n-2)
=T(n)=2+1+T(n-3)=3+T(n-3)

= n+T(0)
=n+0
Jadi T(n) =n
T(n)e O(n)



PROGRAM TEKNOLOGI INFORMASI DAN ILMU KOMPUTER|

Thank You |




