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Objectives

 To present the concept of process synchronization.

 To introduce the critical-section problem, whose solutions 

can be used to ensure the consistency of shared data

 To present both software and hardware solutions of the 

critical-section problem

 To examine several classical process-synchronization 

problems

 To explore several tools that are used to solve process 

synchronization problems
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Background

 Processes can execute concurrently

 May be interrupted at any time, partially completing 

execution

 Concurrent access to shared data may result in data 

inconsistency

 Maintaining data consistency requires mechanisms to ensure 

the orderly execution of cooperating processes

 Illustration of the problem:

Suppose that we wanted to provide a solution to the 

consumer-producer problem that fills all the buffers. We can 
do so by having an integer counter that keeps track of the 

number of full buffers.  Initially, counter is set to 0. It is 

incremented by the producer after it produces a new buffer 

and is decremented by the consumer after it consumes a 

buffer.
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Producer 

while (true) {

/* produce an item in next produced */ 

while (counter == BUFFER_SIZE) ; 

/* do nothing */ 

buffer[in] = next_produced; 

in = (in + 1) % BUFFER_SIZE; 

counter++; 

} 
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Consumer

while (true) {

while (counter == 0) 

; /* do nothing */ 

next_consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE; 

counter--; 

/* consume the item in next consumed */ 

} 
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Race Condition

 counter++ could be implemented as

register1 = counter

register1 = register1 + 1

counter = register1

 counter-- could be implemented as

register2 = counter

register2 = register2 - 1

counter = register2

 Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6} 
S2: consumer execute register2 = counter {register2 = 5} 
S3: consumer execute register2 = register2 – 1  {register2 = 4} 
S4: producer execute counter = register1         {counter = 6 } 
S5: consumer execute counter = register2        {counter = 4}
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Critical Section Problem

 Consider system of n processes {p0, p1, … pn-1}

 Each process has critical section segment of code

 Process may be changing common variables, updating 

table, writing file, etc

 When one process in critical section, no other may be in its 

critical section

 Critical section problem is to design protocol to solve this

 Each process must ask permission to enter critical section in 

entry section, may follow critical section with exit section, 

then remainder section
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Critical Section

 General structure of process Pi  
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Algorithm for Process Pi

do { 

while (turn == j); 

critical section 

turn = j; 

remainder section 

} while (true); 
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Solution to Critical-Section Problem

1.   Mutual Exclusion - If process Pi is executing in its critical 

section, then no other processes can be executing in their 

critical sections

2.   Progress - If no process is executing in its critical section and 

there exist some processes that wish to enter their critical 

section, then the selection of the processes that will enter the 

critical section next cannot be postponed indefinitely

3.  Bounded Waiting - A bound must exist on the number of 

times that other processes are allowed to enter their critical 

sections after a process has made a request to enter its critical 

section and before that request is granted

 Assume that each process executes at a nonzero speed 

 No assumption concerning relative speed of the n

processes



5.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical-Section Handling in OS 

Two approaches depending on if kernel is preemptive or non-

preemptive 

 Preemptive – allows preemption of process when running 

in kernel mode

 Non-preemptive – runs until exits kernel mode, blocks, or 

voluntarily yields CPU

Essentially free of race conditions in kernel mode
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Peterson’s Solution

 Good algorithmic  description of solving the problem

 Two process solution

 Assume that the load and store machine-language 

instructions are atomic; that is, cannot be interrupted

 The two processes share two variables:

 int turn; 

 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the critical 
section

 The flag array is used to indicate if a process is ready to enter 
the critical section. flag[i] = true implies that process Pi is 

ready!
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Algorithm for Process Pi

do { 

flag[i] = true; 

turn = j; 

while (flag[j] && turn = = j); 

critical section 

flag[i] = false; 

remainder section 

} while (true); 
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Peterson’s Solution (Cont.)

 Provable that the three  CS requirement are met:

1.   Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

2.   Progress requirement is satisfied

3.   Bounded-waiting requirement is met
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Synchronization Hardware

 Many systems provide hardware support for implementing the 
critical section code.

 All solutions below based on idea of locking

 Protecting critical regions via locks

 Uniprocessors – could disable interrupts

 Currently running code would execute without preemption

 Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptible

 Either test memory word and set value

 Or swap contents of two memory words
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Solution to Critical-section Problem Using Locks

do { 

acquire lock 

critical section 

release lock 

remainder section 

} while (TRUE); 
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test_and_set  Instruction 

Definition:

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1. Executed atomically

2. Returns the original value of passed parameter

3. Set the new value of passed parameter to “TRUE”.
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Solution using test_and_set()

 Shared Boolean variable lock, initialized to FALSE

 Solution:

do {

while (test_and_set(&lock)) 

; /* do nothing */ 

/* critical section */ 

lock = false; 

/* remainder section */ 

} while (true);
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compare_and_swap Instruction

Definition:

int compare _and_swap(int *value, int expected, int new_value) { 

int temp = *value; 

if (*value == expected) 

*value = new_value; 

return temp; 

} 

1. Executed atomically

2. Returns the original value of passed parameter “value”

3. Set  the variable “value”  the value of the passed parameter “new_value” 
but only if “value” ==“expected”. That is, the swap takes place only under 
this condition.
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Solution using compare_and_swap

 Shared integer  “lock” initialized to 0; 

 Solution:

do {

while (compare_and_swap(&lock, 0, 1) != 0) 

; /* do nothing */ 

/* critical section */ 

lock = 0; 

/* remainder section */ 

} while (true); 
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Bounded-waiting Mutual Exclusion with test_and_set

do {

waiting[i] = true;

key = true;

while (waiting[i] && key) 

key = test_and_set(&lock); 

waiting[i] = false; 

/* critical section */ 

j = (i + 1) % n; 

while ((j != i) && !waiting[j]) 

j = (j + 1) % n; 

if (j == i) 

lock = false; 

else 

waiting[j] = false; 

/* remainder section */ 

} while (true); 
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Mutex Locks

 Previous solutions are complicated and generally inaccessible 
to application programmers

 OS designers build software tools to solve critical section 
problem

 Simplest is mutex lock

 Protect a critical section  by first acquire() a lock then 

release() the lock

 Boolean variable indicating if lock is available or not

 Calls to acquire() and release() must be atomic

 Usually implemented via hardware atomic instructions

 But this solution requires busy waiting

 This lock therefore called a spinlock
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acquire() and release()

 acquire() {

while (!available) 

; /* busy wait */ 

available = false;; 

} 

 release() { 

available = true; 

} 

 do { 

acquire lock

critical section

release lock 

remainder section 

} while (true); 
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Semaphore

 Synchronization tool that provides more sophisticated ways (than Mutex locks)  
for process to synchronize their activities.

 Semaphore S – integer variable

 Can only be accessed via two indivisible (atomic) operations

 wait() and signal()

 Originally called P() and V()

 Definition of  the wait() operation

wait(S) { 

while (S <= 0)

; // busy wait

S--;

}

 Definition of  the signal() operation

signal(S) { 

S++;

}
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Semaphore Usage

 Counting semaphore – integer value can range over an unrestricted 

domain

 Binary semaphore – integer value can range only between 0 and 1

 Same as a mutex lock

 Can solve various synchronization problems

 Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0 

P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

 Can implement a counting semaphore S as a binary semaphore
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Semaphore Implementation

 Must guarantee that no two processes can execute  the wait() 

and signal() on the same semaphore at the same time

 Thus, the implementation becomes the critical section problem 

where the wait and signal code are placed in the critical 

section

 Could now have busy waiting in critical section 

implementation

 But implementation code is short

 Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical sections 

and therefore this is not a good solution
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Semaphore Implementation with no Busy waiting 

 With each semaphore there is an associated waiting queue

 Each entry in a waiting queue has two data items:

 value (of type integer)

 pointer to next record in the list

 Two operations:

 block – place the process invoking the operation on the 

appropriate waiting queue

 wakeup – remove one of processes in the waiting queue 

and place it in the ready queue

 typedef struct{ 

int value; 

struct process *list; 

} semaphore; 
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Implementation with no Busy waiting (Cont.)

wait(semaphore *S) { 

S->value--; 

if (S->value < 0) {

add this process to S->list; 

block(); 

} 

}

signal(semaphore *S) { 

S->value++; 

if (S->value <= 0) {

remove a process P from S->list; 

wakeup(P); 

} 

} 
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Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an 
event that can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S);                 signal(Q);

signal(Q);                 signal(S);

 Starvation – indefinite blocking  

 A process may never be removed from the semaphore queue in which it is 
suspended

 Priority Inversion – Scheduling problem when lower-priority process 
holds a lock needed by higher-priority process

 Solved via priority-inheritance protocol
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Classical Problems of Synchronization

 Classical problems used to test newly-proposed synchronization 

schemes

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem
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Bounded-Buffer Problem

 n buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value n
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Bounded Buffer Problem (Cont.)

 The structure of the producer process

do { 

...

/* produce an item in next_produced */ 

... 

wait(empty); 

wait(mutex); 

...

/* add next produced to the buffer */ 

... 

signal(mutex); 

signal(full); 

} while (true);
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Bounded Buffer Problem (Cont.)

 The structure of the consumer process

Do { 

wait(full); 

wait(mutex); 

...

/* remove an item from buffer to next_consumed */ 

... 

signal(mutex); 

signal(empty); 

...

/* consume the item in next consumed */ 

...

} while (true); 
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Readers-Writers Problem

 A data set is shared among a number of concurrent processes

 Readers – only read the data set; they do not perform any updates

 Writers   – can both read and write

 Problem – allow multiple readers to read at the same time

 Only one single writer can access the shared data at the same time

 Several variations of how readers and writers are considered  – all 

involve some form of priorities

 Shared Data

 Data set

 Semaphore rw_mutex initialized to 1

 Semaphore mutex initialized to 1

 Integer read_count initialized to 0
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Readers-Writers Problem (Cont.)

 The structure of a writer process

do {

wait(rw_mutex); 

...

/* writing is performed */ 

... 

signal(rw_mutex); 

} while (true);
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Readers-Writers Problem (Cont.)

 The structure of a reader process

do {

wait(mutex);

read_count++;

if (read_count == 1) 

wait(rw_mutex); 

signal(mutex); 

...

/* reading is performed */ 

... 

wait(mutex);

read count--;

if (read_count == 0) 

signal(rw_mutex); 

signal(mutex); 

} while (true);
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Readers-Writers Problem Variations

 First variation – no reader kept waiting unless writer has 

permission to use shared object

 Second variation – once writer is ready, it performs the 

write ASAP

 Both may have starvation leading to even more variations

 Problem is solved on some systems by kernel providing 

reader-writer locks
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Dining-Philosophers Problem

 Philosophers spend their lives alternating thinking and eating

 Don’t interact with their neighbors, occasionally try to pick up 2 

chopsticks (one at a time) to eat from bowl

 Need both to eat, then release both when done

 In the case of 5 philosophers

 Shared data 

 Bowl of rice (data set)

 Semaphore chopstick [5] initialized to 1
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Dining-Philosophers Problem Algorithm

 The structure of Philosopher i:

do { 

wait (chopstick[i] );

wait (chopStick[ (i + 1) % 5] );

//  eat

signal (chopstick[i] );

signal (chopstick[ (i + 1) % 5] );

//  think

} while (TRUE);

 What is the problem with this algorithm?



5.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem Algorithm (Cont.)

 Deadlock handling

 Allow at most 4 philosophers to be sitting 

simultaneously at  the table.

 Allow a philosopher to pick up  the forks only if both 

are available (picking must be done in a critical 

section.

 Use an asymmetric solution  -- an odd-numbered  

philosopher picks  up first the left chopstick and then 

the right chopstick. Even-numbered  philosopher picks  

up first the right chopstick and then the left chopstick. 
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Problems with Semaphores

 Incorrect use of semaphore operations:

 signal (mutex)  ….  wait (mutex)

 wait (mutex)  …  wait (mutex)

 Omitting  of wait (mutex) or signal (mutex) (or both)

 Deadlock and starvation are possible.
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Monitors

 A high-level abstraction that provides a convenient and effective 
mechanism for process synchronization

 Abstract data type, internal variables only accessible by code within the 
procedure

 Only one process may be active within the monitor at a time

 But not powerful enough to model some synchronization schemes

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }

}

}
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Schematic view of a Monitor
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Condition Variables

 condition x, y;

 Two operations are allowed on a condition variable:

 x.wait() – a process that invokes the operation is 

suspended until x.signal() 

 x.signal() – resumes one of processes (if any) that

invoked x.wait()

 If no x.wait() on the variable, then it has no effect on 

the variable



5.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor with Condition Variables
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Condition Variables Choices

 If process P invokes x.signal(), and process Q is suspended in 

x.wait(), what should happen next?

 Both Q and P cannot execute in paralel. If Q is resumed, then P 

must wait

 Options include

 Signal and wait – P waits until Q either leaves the monitor or it 

waits for another condition

 Signal and continue – Q waits until P either leaves the monitor or it  

waits for another condition

 Both have pros and cons – language implementer can decide

 Monitors implemented in Concurrent Pascal compromise

 P executing signal immediately leaves the monitor, Q is 

resumed

 Implemented in other languages including Mesa, C#, Java
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Monitor Solution to Dining Philosophers

monitor DiningPhilosophers

{ 

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) { 

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self[i].wait;

}

void putdown (int i) { 

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}
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Solution to Dining Philosophers (Cont.)

void test (int i) { 

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING) ) { 

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() { 

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}
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 Each philosopher i invokes the operations pickup() and 
putdown() in the following sequence:

DiningPhilosophers.pickup(i);

EAT

DiningPhilosophers.putdown(i);

 No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)
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Monitor Implementation Using Semaphores

 Variables 

semaphore mutex;  // (initially  = 1)

semaphore next;   // (initially  = 0)

int next_count = 0;

 Each procedure F will be replaced by

wait(mutex);

…

body of F;

…

if (next_count > 0)

signal(next)

else 

signal(mutex);

 Mutual exclusion within a monitor is ensured
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Monitor Implementation – Condition Variables

 For each condition variable x, we  have:

semaphore x_sem; // (initially  = 0)

int x_count = 0;

 The operation x.wait can be implemented as:

x_count++;

if (next_count > 0)

signal(next);

else

signal(mutex);

wait(x_sem);

x_count--;
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Monitor Implementation (Cont.)

 The operation x.signal can be implemented as:

if (x_count > 0) {

next_count++;

signal(x_sem);

wait(next);

next_count--;

}
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Resuming Processes within a Monitor

 If several processes queued on condition x, and x.signal() 

executed, which should be resumed?

 FCFS frequently not adequate 

 conditional-wait construct of the form x.wait(c)

 Where c is priority number

 Process with lowest number (highest priority) is 

scheduled next
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 Allocate a single resource among competing processes using 
priority numbers that specify the maximum time a process  
plans to use the resource

R.acquire(t);

...

access the resurce;

...

R.release;

 Where R is an instance of  type ResourceAllocator

Single Resource allocation 
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A Monitor to Allocate Single Resource

monitor ResourceAllocator 

{ 

boolean busy; 

condition x; 

void acquire(int time) { 

if (busy) 

x.wait(time); 

busy = TRUE; 

} 

void release() { 

busy = FALSE; 

x.signal(); 

} 

initialization code() {

busy = FALSE; 

}

}
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Synchronization Examples

 Solaris

 Windows

 Linux

 Pthreads
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Solaris Synchronization

 Implements a variety of locks to support multitasking, multithreading 

(including real-time threads), and multiprocessing

 Uses adaptive mutexes for efficiency when protecting data from short 

code segments

 Starts as a standard semaphore spin-lock

 If lock held, and by a thread running on another CPU, spins

 If lock held by non-run-state thread, block and sleep waiting for signal of 

lock being released

 Uses condition variables

 Uses readers-writers locks when longer sections of code need 

access to data

 Uses turnstiles to order the list of threads waiting to acquire either an 

adaptive mutex or reader-writer lock

 Turnstiles are per-lock-holding-thread, not per-object

 Priority-inheritance per-turnstile gives the running thread the highest of 

the priorities of the threads in its turnstile
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Windows Synchronization

 Uses interrupt masks to protect access to global resources on 

uniprocessor systems

 Uses spinlocks on multiprocessor systems

 Spinlocking-thread will never be preempted

 Also provides dispatcher objects user-land which may act 

mutexes, semaphores, events, and timers

 Events

 An event acts much like a condition variable

 Timers notify one or more thread when time expired

 Dispatcher objects either signaled-state (object available) 

or non-signaled state (thread will block)
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Linux Synchronization

 Linux:

 Prior to kernel Version 2.6, disables interrupts to 

implement short critical sections

 Version 2.6 and later, fully preemptive

 Linux provides:

 Semaphores

 atomic integers

 spinlocks

 reader-writer versions of both

 On single-cpu system, spinlocks replaced by enabling and 

disabling kernel preemption
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Pthreads Synchronization

 Pthreads API is OS-independent

 It provides:

 mutex locks

 condition variable

 Non-portable extensions include:

 read-write locks

 spinlocks
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Alternative Approaches

 Transactional Memory

 OpenMP

 Functional Programming Languages
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 A memory transaction is a sequence of read-write operations 
to memory that are performed atomically.

void update()

{

/* read/write memory */

}

Transactional Memory
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 OpenMP is a set of compiler directives and API that support 
parallel progamming.

void update(int value)

{

#pragma omp critical

{

count += value

}

}

The code contained within the #pragma omp critical directive 
is treated as a critical section and performed atomically.

OpenMP
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 Functional programming languages offer a different paradigm 
than procedural languages in that they do not maintain state. 

 Variables are treated as immutable and cannot change state 
once they have been assigned a value.

 There is increasing interest in functional languages such as 
Erlang and Scala for their approach in handling data races.

Functional Programming Languages
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End of Chapter 5


