1. RPS Big Data Ganjil 2018-2019 | SLIDE AWAL KULIAH-JSI
6. Wordcount Hadoop | WordCount Java | WordCount Python
7. Analisis Data Tingkat Lanjut
8. Spark
1. Algorithm: An Introduction | RPS-CIF62240-Desain dan Analisis Algoritma
2. Pertemuan 2 Non-Recursive Algorithm Efficiency
3. Pertemuan 3 Asymptotic Notation
4. Pertemuan 4 Recursive Algorithm | Tugas Recursive Algorithm
6. Pertemuan 6 Greedy Algorithm
8. Decrease and Conquer | Decrease and Conquer, BFS, DFS
9. Dynamic Programming | Dynamic programming 2 | Dynamic Programming 3 | Latihan Dynamic Programming
3. Pembobotan Kata | Contoh Term Weighting
4. Information Retrieval | The-Vector-Space-Models v2
5. Information-Extraction-and-Named-Entity-Recognition
6. Peringkasan Text | Peringkasan dengan TF | Peringkasan dengan TF IDF
7. Contoh Source Code Preprocessing
8. Document Clustering | Contoh Perhitungan Clustering
0. Operating System Online Course
1. RPKPS-SI-FILKOM-2017 Sistem Operasi
2. Chapter 1 Introduction | Chapter 2 Operating-System Structures
5. Chapter 5 Process Synchronization | Chapter 6 CPU Scheduling
7. Chapter 8 Main Memory | Chapter 9 Virtual Memory
8. Chapter 10 Mass-Storage Structure
2. Pertemuan 01 – Statitika – Pendahuluan Statistika
3. Pertemuan 02 – Statistika – Data Statistik
4. Pertemuan 03 – Ukuran Pemusatan
5. Pertemuan 04 – Ukuran Penyebaran
6. Pertemuan 06 – Pengantar Probabilitas | Pertemuan 06 Variabel Acak Diskrit
7. Pertemuan 07-Variabel Kontinu | Pertemuan 07-Jenis Distribusi Kontinu
8. Pertemuan 08-Sampling dan Distribusi Sampling
9. Pertemuan-09-Penaksiran-Parameter
10. Pertemuan-10-Pengujian-Hipotesis
12. Pertemuan-12-Analisis Regresi & Korelasi
13. Tabel Z | Tabel T | Tabel Chi 1 | Tabel Chi 2
2. Text Pre-Processing | Text Pre-Processing PDF
3. Document Indexing and Term Weighting
3.1. Stopwords
3.2. Contoh Source Code Preprocessing
4. Information Retrieval | Vector-Space-Models
5. Information-Extraction-and-Named-Entity-Recognition
6. Rule Based NER | Naive-Bayes-Based-NER
7. Naive Bayes Classification Kelas B | Naive Bayes Classification Kelas A
9. K Means Clustering kelas B | K Means Clustering kelas A
10.Twitter Sentiment Analysis Feature Extraction | Paper Referensi
11. Kamus Kata Positif, Negatif, Emoticon, Intensifier, dll | Kateglo
12. Paper Referensi 1 | Paper Referensi 2
https://www.quora.com/What-is-the-best-way-to-use-continuous-variables-for-a-naive-bayes-classifier-Do-we-need-to-cluster-them-or-leave-for-self-learning-Pls-help
1. RPKPS-AI-Semester-Ganjil-2013-2014 RPKPS-AI-Semester-Ganjil-2015-2016
2. AI – Intro
6. Informed Searching & Minimax
7. Constraint Satisfaction Problem
9. FirstOrderLogic_Koblenz | FOL_UI
10. Logic Programming | 11.1-Logic Programming_AI
11. Inference in FOL | 11.2-Inferensi pada FOL_AI
11.2. Inference Task